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Abstract. Less-than-truckload (LTL) is a transport modality that includes many 

practical variations to convey  a number of transportation-requests from the 

origin locations to their destinations by using the possibility of goods-

transshipments on the carrier’s terminals-network. In this way logistics 

companies are required to consolidate shipments from different suppliers in the 

outbound vehicles at a terminal of the network. We present a methodology for 

finding near-optimal solutions to a LTL shipping modality used for cargo 

consolidation and distribution through a terminals-network. The methodology 

uses column generation combined with an incomplete branch-and-price 

procedure.  

Keywords: cargo consolidation; distribution; less-than-truckload; branch-and-

price; transshipment, multiple terminals. 

1   Introduction 

Suppliers, manufacturers, warehouses and customers are the major components of the 

so-called supply chain (SC) carrying goods from the upstream to the downstream side 

of the SC [1]. Distribution is concerned with the shipment and storage of products 

downstream from the supplier side to the customers side in the supply chain. How 

freight is routed through the terminals-network, and thus where opportunities for 

consolidation occur, is determined by the so called “load plan” which specifies, if 

convenient, a sequence of transfers for each shipment [2]. In order to operate with 

high efficiency a LTL system must deal with complex issues like, for example, how 

truck loading and unloading should be scheduled at the terminals and how vehicles 

should be routed. The way goods are collected and delivered is of crucial importance 

for determining the cargo flows and workload on terminals. However, cost-effective 

shipping is not the only challenge for carriers since they have to ensure a certain 

service-quality level. This work  presents a truncated branch-and-price 

decomposition-approach to provide solutions to a problem related to the LTL 

shipping-mode. The solutions consist on a set of pick-up, delivery, pick-up-and-

delivery, and transfer routes used to move cargo from the stated source locations to 

the started destinations. This work builds on a previous one [3] and aims at 
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assembling pick-up, transfer and delivery tours on a flexible way in order to avoid the 

rigid time delimitation constraints used in such a work.  

2  Modeling and Defining the Problem 

A LTL carrier operates a terminals-network to provide convey services during a 

specified time period as, for example, on a daily basis. The company usually operates 

as follows: during a given time horizon “local carriers” pick-up shipments from 

various source locations in a given geographical area, and bring them to the terminal 

serving the area which  is  usually called the “end-of-line” terminal. The terminal 

operates as sorting and consolidation center and as a loading/unloading facility for the 

outbound and inbound freight of the area. After sorting and consolidation, large 

carriers are sent to other end-of-line terminals. Outbound freight from an end-of-line 

terminal is sent to a “break-bulk” terminal where it may be consolidated with freight 

from other end-of-lines terminals. The terminals-network of the carrier and the cargo-

source and destination locations to visit are illustrated  in Figure 1.  

 Pick-up location
 Delivery location
 Terminal or hub
 Break-bulk terminal
 End-of-line terminal

Long-haul routes
Pick-up routes
Delivery routes
Pick-up and delivery routes

 

Fig. 1: A typical two-levels network used for cargo consolidation and distribution 

(reprinted from [3]).  

This two-echelons network involves an upper level sub-network connecting 

terminals and a lower level sub-network connecting source and destiny locations. 

Vehicles picking and/or delivering cargo travel along the low-level network to bring 

freight to terminals and to move freight from terminals to destinations. Consolidation 

at a terminal requires freight to be cross-docked which results in handling costs. 

Freight transportation between terminals is carried out by the co-called long-haul 

trucks. So, there are several ways to deliver a shipment: it may be directly moved 

from its origin to its destination, it may be sent to the terminal serving the area and 
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from there delivered to the destination and; from one terminal it may be sent to 

another terminal and from there delivered to the destination. The problem is formally 

defined as follows: 

 

Let the transportation network be represented by a directed graph G(T  I
+
  I

-
; A) 

comprising a set T of terminals that operate as origin and destination of local and 

long-haul shipments; a set I
+ 

of pick-up locations and the set I
- 
of delivery sites. The 

list of route-arcs connecting them is defined by A. Non-negative values dij and tij are 

associated to each arc (i,j)  A, representing respectively the travel distance/cost and 

the travel-time to reach the site j starting from the location i. A transportation request 

τ = {i, j} of a request list Γ = { τ1, ... τ n} consists of a demand for a transportation 

service from the origin-location i  {I
+
 ∩ τ} to the destination location j {I

-
 ∩ τ}  

for a stated load lij. Visits must start within stated time windows [ti
min

, ti
max

] for all 

pick-up sites i  I
+ 

and [tj
min

, tj
max

] for sites j  I
-
. These time-windows must also be 

compatible. Fixed service times sti are spent at each pickup/delivery location i  {I
+
 

 I
-
}. The shipping alternatives available to fulfill the delivery of any request τ   Γ 

are: (i) Shipping on a local vehicle directly from the origin i  (I
+ 

∩ τ) to the 

destination j  (I
- 
∩ τ). (ii)  Shipping from the origin i I

+ 
∩ τ) to the destination j 

I
- 
∩ τ) via cross-docking on a single terminal t T. (iii) Shipping from the origin i 

I
+ 

∩ τ) to the destination j  (I
- 
∩ τ) through a long-haul trip between two terminals 

(t, t') T: t ≠ t'. The number of trips of any type, the terminals from where trips 

starts/ends and the long-haul flow between terminals must be determined by the 

solution. The operational costs depend on the number of pick-up, delivery, pick-up-

and-delivery and long-haul routes and on the number of incurred cross-docking 

operations. The objective is to minimize the sum of cross-docking costs, vehicles 

fixed costs and traveling costs while satisfying the following operational constraints: 

(a) All pick-up and delivery sites must be visited just once and only by one vehicle. 

(b) The service at each customer must start within its time window. (c) Each pick-

up/delivery/mixed route begins at a terminal and ends at the same terminal. (d) The 

sum of the collected/delivered loads in each pick-up/delivery/mixed route must not 

exceed the capacity of the in-route vehicle. (e) All routes must be fulfilled within  the 

time-interval [0,t
max

]. 

 

In [3] this problem was tackled by partitioning the whole time-horizon [0,t
max

] in 

three stages; a pick-up stage bounded by the time-interval [0,t
max+

], a transfer stage 

bounded by the interval [t
max+

, t
min-

] and a delivery stage bounded by the interval [t
min-

,t
max

]. Furthermore, a request can be directly driven from its origin to its destination 

by a mixed pick-up-and-delivery trip during the whole time-interval [0, t
max+

]. The 

rigid time-delimitation imposed to pure pick-up routes and pure delivery-routes lead 

to a constrained solution space that may exclude good solutions assembling, for 

example, a “long” pick-up route with a “short” delivery route. So, we propose in this 

work to drop the hard time delimitation between these steps and let the solution 

procedure to fix the routes time lengths for routes other than the mixed and transfer 

routes.  
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In order to model this problem as an Integer Program (IP), let us assume that R
T
 

denotes the set of long-haul routes, R
+
 the set of pick-up routes, R

-
 the set of delivery 

routes and R
+-

 the set of mixed pick-up and delivery routes. For each route r  {R
T
  

R
+ 
 R

- 
 R

+-
}, cr denote its cost, given by the sum of the costs of the arcs travelled 

by the vehicle plus a given fixed vehicle-utilization-cost.  Long-haul routes r  R
T 

include also the cost of the associated cross-docking operations at start/end terminals. 

We are also given a binary parameters air indicating whether route r  {R
+
  R

-
  R

+-

} visits (air = 1) or not (air = 0) the location i  I
+
  I

-
. For a route r  { R

+
  R

-
  

R
+-

}, we consider also a binary parameter brt that assumes value 1 if route r starts/end 

on the terminal t and 0 otherwise. In that model, we use the binary decision variable 

Xr to determine if the route r  {R
T
  R

+
  R

- 
 R

+-
} belongs to the optimal solution 

or not. The problem can now be formulated as: 

 

Minimize   
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The parameter tr
+

end stands for the end-time of unload activities for the route r  

R
+
, tr

transf
 is the transfer time of the long haul route r  R

T
 while tr

-
start is the start time 

of loading activities for the route r  R
-
. The objective function (1) minimizes the cost 

of all kind of routes. Constraint (2) assures that the source site i  I
+
is visited exactly 

once while constraints (3) guarantee that each destination place i  I
-
 is visited exactly 

once. Inequalities (4) are transfer constraints imposing that long-haul route r = (t, t') 

R
T
 is used whenever the load picked-up from its source site i  I

+
 is unloaded on the 

terminal t and loaded on the terminal t' for its delivery to the destination site i  I
-
. 

Constraint (5) coordinates in the time dimension these transfers. I.e. it states that the 
start-time of the route delivering the cargo associated to request τ must be larger than 

the sum of the transfer-time and the time at which this cargo is unloaded on the start-

terminal t of the transfer route (t, t'). Both indexes t and t' may refer to the same 

physical terminal to consider the shipping option (ii). Since the number of terminals is 

much smaller than the number of pick-up and delivery locations and because the 

transfer routes involve a single arc, they can be totally enumerated. It is not possible 

to generate all feasible routes r  {R
+
  R

-
  R

+-
} but a column generation approach 
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handles this complexity by implicitly considering all of them through the solution of 

the linear relaxation of the formulation (1)-(5), called the reduced master problem 

(RMP). In this way, a portion of feasible routes (usually an initial but suboptimal 

solution) is enumerated and the linear relaxation of the RMP is solved considering 

just this partial set. The solution to this problem is used to determine if there are 

routes not included in the routes-set that can reduce the objective function value. 

Using the values of the optimal dual variables for the master constraints with respect 

to the partial routes-set, new routes are generated and incorporated into the columns 

pool, and the linear relaxation of the RMP is solved again. The procedure iterates 

between the master problem and the routes-generator-problems until no routes with 

negative reduced costs can be found. After that, an integer master problem may be 

solved for finding the best subset of routes. The procedure must be embedded into a 

branch-and-bound algorithm to find the optimal subset  because some routes that were 

not generated when solving the relaxed RMP may be needed to solve the integer one. 

Finally, the solution is specified by solving, a travelling salesman problem with time 

windows for each selected column. The process is named branch-and-price and 

involves the definition of the linear RMP, the definition of the slave routes-generator 

or pricing problems and the implementation of a branching rule. 

2.1   The Master Problem 

To obtain the RMP we reorder the constraints (4)  and (5) to give rise to the 

following relaxed RMP: 

 

Minimize        
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The RMP was expressed according the Ax ≥ b mathematical structure, in which the 

first column of constraints (5) correspond to all generated pick-up routes, the second 

column to all generated delivery routes, the third one to the generated mixed routes 

and the last one to the enumerated transfer routes. The zeros represent missing routes 

on each block. E.g. the zero in the second column of constraint (2) mean that pure 

delivery routes can't visit a pick-up site i  I
+
. The first three columns arising from 

eqs. (1) to (5) define the respective pricing problems. The last column is associated to 

the transfer routes. Since they were pre-enumerated, their generation is not necessary. 

2.2   Pricing sub-problems 

Let us assume that the optimal solution to the relaxed RMP had been found and 

that π
+
 ,  π

-
 π

t
 and π

t’
 are the vectors of optimal dual values for constraints (2), (3), (4) 

and (5) respectively. These vectors are passed to the slave pricing problems in order 

to produce more routes that will be useful to reduce the value of the objective (1). 

Each feasible tour is an elementary path from a start-terminal to the same end-

terminal through some locations of the network. The pricing problems are elementary 

shortest path problems with resource constraints (ESPPRC) and when there are 

multiple terminals, a pricing problem may be solved for each terminal in each pricing 

step. In our application we solve exactly the MILP formulation of the elementary 

pricing problems with a branch-and-cut solver. What follows is the formulation to the 

pricing problem for generating pick-up routes: 
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The objective function (7) is the cost CV of the generated route minus the prices πi 

collected on the visited pick-up sites; minus the prices πri
t
  related to the inbound load-

flow and minus prices πri
t'
 related to unload time on the selected terminal. The 

parameter air of the master problem becomes the decision variable Yi of the pricing 

one. Also the parameter (air tr
+

end) of the master problem becomes the continuous 

variable Ti
+
 in the pricing problem. The binary parameter xt indicates the start/end 

terminal of the designed tour in  eqs. (8)-(9). The constraint (10) set the minimum 

distance to reach the site i I
+
 as the distance of going directly from the terminal to 

the location i. The constraints (11) and (12) compute the distances travelled to reach 

the visited sites i I
+
 and the total cost of the generated route respectively. So, eqs. 

(11) fix the accumulated distance up to each visited site. If locations i and j are 

allocated onto the generated route (Yi = Yj = 1), the visiting ordering for both sites is 

determined by the value of the sequencing variable Sij. If location i is visited before j 

(Sij = 1), according constraints (11.a), the travelled distance up to the location j (Dj) 

must be larger than Di by at least dij. In case node j is visited earlier, (Sij = 0), the 

reverse statement holds and constraint (11.b) becomes active. If one or both sites are 

not allocated to the tour, the eqs. (11.a)-(11.b) become redundant. MD is an upper 

bound for variables Di. The eq. (12) computes the route-cost CV by the addition of the 

fixed vehicle utilization cost cfv to the travelled-distance-cost up to the terminal to 

which the vehicle must return. MC is an upper bound for the variable CV. The timing 

constraints stated by eqs. (13) to (15) are similar to constraints (10) to (12) but they 

apply to the time dimension. MT is an upper bound for the times Ti spent to reach the 

nodes i I
+
 and for the tour-time-length TV. Eq. (16) forces the service time on any 

site i  I
+
 to start at a time Ti bounded by the time window [ti

min
, ti

max
]. The eq. (17) 

adds to the tour time-length a term related to the unload activities on the selected 
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terminal to define the end unload-time for each cargo request. This eq. defines the 

availability time on the terminal of cargo picked-up from site i I
+
. This time must 

be coordinated with the sum of the transfer time and the load time for the final 

delivery. This is done via duals of constraints (5) that modify the unload time of the 

pick-up tour and the load time of the delivery tour, just in case the request is not 

fulfilled by a mixed trip. The eq. (18) is a capacity constraint for the vehicle travelling 

the designed pickup tour.  

The objective of the slave problem for generating delivery tours is to find a route r 

minimizing the quantity stated by the objective function (19). 

 

Minimize 
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subject to constraints that are similar to constraints (9) to (18) but which are used 

to design delivery routes. So, we change I
+
 by I

-
 in the domain of the constraints (9)-

(18) except eqs. (13) and (17) because eq. (17) is replaced by eq. (20) and eq. (13) 

replaced by eq. (21): 
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The parameter t
max

 indicates the end-time for all kind of activities and the load time 

Ti
 - 

becomes a problem variable coordinated with Ti
+
 by the duals of master constraint 

(5). 

The objective of the slave problem for generating pick-up and delivery tours is to 

find a route r minimizing the quantity stated by the objective function (20). 

 

Minimize








 

 IIi
ii YCV 

 

 (22) 

 

Constraints similar to eqs. (9) to (18) but refereed now to the set {I
+
  I

-
} of pick-

up and delivery sites must be considered. Eq. (21) must be also included in this slave 

problem. 

2.3   Branching strategy 

The linear relaxation of the RMP may not be integer and applying a standard 

branch-and-bound procedure to this problem with a given pool of columns may not 

yield  an optimal solution. Also a column pricing favorably may exist but it may not 

be present in the RMP. To find the optimal solution, columns must be generated after 

branching. So, according to [4] if the master problem returns a solution that is 
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fractional in the number of used tours k, we branch on this number by creating two 

child nodes equivalent to the current subspace but with the addition of Σr Xr ≥ ceil(k) 

and Σr Xr  ≤ floor(k) constraints to the respective master problems. This branching 

strategy should be effective when solving problems that include fixed costs in the 

column costs because the total cost should be sensitive to the saving of a tour. After 

fixing the number of vehicles, we start to branch according to the Ryan and Foster [5] 

benching strategy. The rule amounts to selecting two locations i and j and generating 

two branch-and-bound nodes; one in which i and j are serviced by the same vehicle 

and the other where they are serviced by different vehicles. To enforce the branching 

constraints, rather than adding explicitly them to the master problem, the infeasible 

columns are eliminated from the columns-set considered in the branch-and-price 

node. We integrated both branching rules in a hierarchical way. The branching 

procedure uses branching on the number of vehicles first and whenever this number 

has been fixed, we start to branch according the Ryan and Foster rule. Best first 

search was the node selection strategy. 

2.4   Implementation 

The branch-and-price algorithm has been coded in GAMS 23.6.2 and integrates a CG 

routine into a branch-and-bound routine. Both GAMS routines were separately 

developed by Kalvelagen [5, 6] and were integrated in this work. Minor branching 

and assembling modifications aimed at replacing the NLP of the [4] MINLP 

algorithm by the CG [6] procedure and aimed at forbidding the branching 

combination Yi = 0 for all i  I
+ 
 I

- 
 were also introduced. Some standard speeding 

tricks [7]  as ‘early-termination’ and ‘time windows reduction’ were also 

implemented. The algorithm uses the CPLEX 11 as the MILP sub-algorithm for 

generating columns and for computing upper and lower bounds. It was tuned to 

generate a several columns per master-slave iteration.  

Table 1: Settings options of the branch-and-price algorithm 

Option  
MILP solver 
Branching rule 
 
Nodes selection strategy 
Maximum CPU time per master-slave iteration (s) 
Early termination option 
Multiple columns generated per iteration 
Time-windows reduction 
Maximum number of iterations per branch and price node 
Maximum number of branch-and-price inspected nodes  

Master problem 
Columns pool 

CPLEX 11 
On the number of tours 

+ Ryan and Foster 
Best first search 

30 
Yes 
Yes 
Yes 
100 

100 (root)/ 5 (no-root) 
Partitioning 
Up to 10000 
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3 A case study 

We illustrate the use of the solution procedure on a case study with real data. A 

transportation company from Santa Fe provides distribution services of non-

perishable products to several  industrial  and service companies  in the urban Santa 

Fe area and surroundings. The operation involves the use of several vans based on 

two depots (Central depot and S. Tomé depot) that exchange cargo by using a single 

truck once a day.  Vans are used to collect/deliver small cargo and their maximum 

volumetric capacity is q = 7.5 m
3
. The truck capacity is large enough to be considered 

un-constraining. Service times at pick-up/delivery stops are considered approximately 

constant, sti = 20 minutes, and the average urban-travel speed is assumed to be 20 

km/h. The case study uses data from a working day and involves the fulfillment of 44 

transportation requests within the day. We estimated the distance (in km) between 

clients locations and between these locations and both depots by using the Manhattan 

distance formula jointly with the clients locations on the city map. The whole dataset 

can be found in [3]. Usually the company performs pickup activities during morning 

and delivery during afternoon to allow some consolidation work between both stages 

and to avoid cargo warehousing at night. Time windows usually are not considered 

and sometimes they can be assigned just to a few clients. A fixed van utilization cost 

cfv = $ 200 and a unit distance cost $10/km are here considered. Transfer trips 

“Central  depot – S. Tomé” and “S. Tomé - Central  depot”  include transportation 

and workload costs on both depots and have an associated cost cflong-haul = $1700/day. 

Cargo transshipment costs on each depot are cf = $400/day. This case study was 

solved in [3] considering a rigid time-delimitations between the pick-up, transfer and 

delivery stages. Some vans were allowed to perform pick-up and delivery tours on 

long trips starting in the morning and ending at the night. Here, we drop hard time-

constraints applied to slave pickup problems and to slave delivery problems and 

introduce in their objective functions the terms related to duals of the coordinating 

constraint (5), according to the methodology above presented. Afterwards, we applied 

the solution algorithm above developed to that case study and generated the solution 

to be next detailed. The algorithm ran in a 2-core, 2.5 GHz, 6 GB RAM notebook and 

the mechanism settings used to solve the problems are summarized in Table 1. The 

solution was obtained in 3088 s (integrality gap = 7.67%) and involves 8 pickup tours, 

7 delivery tours, 3 mixed tours and 2 transfer-trips. It implied a total cost of $ 17382. 

That means, we saved $ 238 with respect to the solution reported in [3]. The solution 

is summarized in Tables 2 to 5. 

Table 2: Pick-up tours 

Tour Trajectory Tour cost 
($) 

Tour time 
(‘) 

Load 
(m3) 

1 
2 
3 
4 
5 
6 
7 
8 

C-n11-C 
C-n47-n36-n46-n45-C 
ST-n16-n39-n14-ST 
C-n19-n7-n12-n24-n33-C 
C-n31-n50-n25-n13-n17-C 
ST-n15-n43-n38-n44-ST 
C-n32-n20-n35-n9-n10-C 
C-n49-n8-n48-C 

276 

707 

727 
967 

1027 

443 
653 

582 

55 

201 

213 
287 

285 

149 
211 

161 

1.2 

6.7 

7.5 
6.0 

7.2 

5.5 
7.3 

7.5 

C: Central depot; ST: Secondary S.Tomé depot; Time t = 0‘ correspond to 8:00 AM 
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Table 3: Requests transshipped  

Depot Requests transshipped Load 

transshipped (m3) 

C n7-n19-n12-n33-n31-n50-n13-n17-n32-n20-n35-n9-n10-
n49-n48 28.7 

Table 4: Requests transferred between both depots 

Trip Requests transferred Cargo 

transferred (m3) 

C → ST 
ST → C 

n1-n36-n46-n45-n7-n24-n25-n8 
n16-n39-n14-n15-n43-n38-n44 

7.2 

13.0 

Table 5: Delivery tours 

Tour Start 
time (‘) Trajectory Tour cost 

($) 
Tour time 

(‘) 
Load 
(m3) 

1 
 

2 
3 
4 
5 
6 
7 
 

375 
 

488 
526 
547 
513 
497 
500 

 

ST-n57-n74-n75-n67-n58-n95-n96-
n61-n86-ST 
C-n60-n97-n99-C 
C-n94-n89-n88-C 
C-n62-n64-n63-C 
C-n66-n65-n81-C 
C-n70-n69-n82-n83-C 
C-n93-n59-n98-n100-n85-C 
 

949 

662 
562 

510 

787 
630 

688 

704 

679 
724 

669 

690 
663 

737 

7.4 

7.5 
7.5 

6.5 

6.0 
6.7 

7.3 

Table 6: Pick-up and delivery tours 

Tour Trajectory Tour cost 
($) 

Tour time 
(‘) Load(m3) 

1 
 

2 
 

3 
 

C-n18+-n27+-n28+-n29+-n34+-n28—n29—n27—

n18—n24--C 
ST-n42+-n23+-n22+-n41+-n37+-n73—n37—n41-

-n42--n22--ST 
C-n30+-n40+-n21+-n26+-n26--n30--n21--n40—

C 

 

1171 

 
983 

 

1037 

 

713 

 
662 

 

690 

 

72 

 
68 

 

62 

+Pickup location  - Delivery location 

4 Conclusions 

We developed a truncated branch-and-price solution algorithm to efficiently design 

a transportation agenda for a LTL-like practical problem involving the fulfillment of a 

list of transportation requests in an urban area and surroundings by choosing between 

three different delivery options: direct delivery by the same vehicle, a delivery via 

transshipment on a terminal or a three-stages delivery option which includes a pick-up 

step, a long-haul route between two terminals and the final delivery. The problem was 

first modeled as a set partitioning problem with additional transfer and 

unloading/transfer/loading time-coordinating  constraints. The model was later 

embedded into an incomplete branch-and-price solution-mechanism. The mechanism 

reorders the transfer and time-coordination constraints to express them as covering 

constraints to add to the partitioning constraints for pick-up and delivery locations. 

44 JAIIO - SII 2015 - ISSN: 2451-7542 111



SII 2015, 4º Simposio Argentino de Informática Industrial.

The pricing problems were formulated as integer-linear programs and solved by a 

branch-and-cut solver trying to obtain a maximum number of elementary columns per 

master-slave iteration. The work was built over a previous one [3] that considers that 

pick-up activities must end before a stated timeline t
max+

 and delivery activities must 

start after a timeline t
min-

 (>t
max+

). The interval between both timelines is devoted to 

transshipment and transfer activities. In the present work we drop these hard 

constraints from the associated slave pick-up problem and  slave delivery problem. 

Since pick-up and delivery tours must be now coordinated, the dropping of these 

constraints from slave problems means the introduction of an additional coordinating 

constraint in the master problem. This constraint, in turn, passes information to slave 

subproblems via duals πri
t’ 

that are useful to adjust the end-time of pickup routes and 

the start time of delivery tours. Some standard options were also taken: branching on 

the number of tours was selected as a higher level branching-rule to explore a finite 

branch-and-price tree. After fixing the number of vehicles, the algorithm starts to 

branch according the Ryan and Foster rule. The use of the mechanism was illustrated 

by solving a case study previously solved in a framework that strictly time-delimit the 

pickup, transfer and delivery phases for trips others than the mixed one. A small cost 

saving was obtained with respect to this older framework. The procedure proposed in 

this work was aimed at eliminating these rigid delimitations. Further numerical 

examples should be solved to evaluate the robustness of the procedure. 
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