
Reasoning with Inconsistent Possibilistic Ontologies by
Applying Argument Accrual

Sergio Alejandro Gómez1,2

1Laboratorio de Desarrollo e Investigación en Inteligencia Artificial (LIDIA), Instituto de Ciencias e Ingenierı́a de la
Computación (ICIC), Departamento de Ciencias e Ingenierı́a de la Computación (DCIC), Universidad Nacional del Sur (UNS),

San Andrés 800 - Campus de Palihue (8000) Bahı́a Blanca, Argentina, sag@cs.uns.edu.ar
2Comisión de Investigaciones Cientı́ficas de la Provincia de Buenos Aires (CIC-PBA)

Abstract

We present an approach for performing instance check-
ing in possibilistic description logic programming on-
tologies by accruing arguments that support the mem-
bership of individuals to concepts. Ontologies are
interpreted as possibilistic logic programs where ac-
cruals of arguments as regarded as vertexes in an ab-
stract argumentation framework. A suitable attack
relation between accruals is defined. We present a rea-
soning framework with a case study and a Java-based
implementation for enacting the proposed approach
that is capable of reasoning under Dung’s grounded
semantics.

Keywords: Argument accrual, ontology reasoning,
inconsistency handling, Description Logics.

1 Introduction

Reasoning with inconsistent ontologies plays a fun-
damental role in Semantic Web applications. An on-
tology defines axiomatically a set of concepts that,
given assertions about the membership of individuals
to some concepts, allows to determine the membership
of individuals to concepts (a task known as instance
checking). Ontologies can suffer from incoherence
and inconsistency; either correcting these anomalies
or dealing with them with non-monotonic reasoning
techniques are the two main accepted solutions [1].
Argumentation [2] is an approach to defeasible reason-
ing that can be applied to handling inconsistency in
ontologies. In argumentation, given an inconsistent
knowledge base, arguments compete to decide which
are the accepted consequences. Argument accrual for-

Citation: S.A. Gómez. ”Reasoning with Inconsistent Possi-
bilistic Ontologies by Applying Argument Accrual”. Journal of
Computer Science & Technology, vol. 17, no. 2, pp. 117–126,
2017.

Received: February 14, 2017. Revised: March 09, 2017.
Accepted: May 17, 2017.

Copyright: This article is distributed under the terms of the
Creative Commons License CC-BY-NC.

malizes the notion that having more arguments for a
certain conclusion makes it more credible [3].

In this paper, that is an extended and revised ver-
sion of [4], we explore the application of argument
accrual to reasoning with inconsistent ontologies. To
the best of our knowledge, argument accrual were
firstly studied by [5] and its application to the prob-
lem of ontology reasoning has only been suggested by
Groza [6] in the context of fuzzy description logics.
We use possibilistic description logic programming
as the language for ontology representation (i.e. an
ontology is ultimately interpreted as a possibilistic
logic program). Arguments are then computed and
accrued to compute the membership of instances to
concepts using structured argumentation under Dung’s
grounded semantics. Our approach is qualitative pro-
viding a case study to show how our approach works,
and a downloadable Java-based implementation for
enacting our results.

As stated above, in this work, for reasoning with
inconsistent ontologies instead of relying on the DeLP
semantics (as in Gomez et al. did in [7, 8, 9]), we pro-
pose reasoning with arguments comparable by their
relative weight via a grounded semantics along with
argument accrual. See [7, 8, 9] for an account of re-
lated work concerning the topic of reasoning with in-
consistent ontologies. Several authors approach the
implementation of argumentation systems based on
Dung’s semantics (e.g. [10, 11, 12]; see Section 6 for
a review of these works).

The rest of the paper is structured as follows. In
Section 2, we recall the fundamentals of possibilistic
description logic ontologies. In Section 3, we review
how argumentation under Dung’s semantics with argu-
ments expressed in possibilistic logic programming is
achieved and how possibilistic description logic ontolo-
gies can be interpreted as possibilistic logic programs.
In Section 4, we introduce how to reason with incon-
sistent possibilistic ontologies using argument accrual.
In Section 5, we discuss implementation details of the
enactment of the proposed reasoning framework. In
Section 6, we review related work. Finally, we con-
clude in Section 7.

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

117

2 Possibilistic description logic ontolo-
gies

2.1 Classical description logics

Description Logics (DL) are a well-known family of
knowledge representation formalisms [13]. In this
work, we will consider a very tight subset LDL of
DLs, to which we will restrict our discussion, based
on the notions of concepts (unary predicates, classes).
Concept descriptions are built from concept names
C,D, . . . using the constructors conjunction (CuD),
disjunction (CtD) and negation (¬C). The empty
concept is denoted by ⊥. A DL ontology Σ = (T,A)
consists of two finite and mutually disjoint sets: a Tbox
T which introduces the terminology and an Abox A
(assertional box) which contains facts about particular
objects in the application domain. The Tbox contains
inclusion axioms C v D, where C and D are (possibly
complex) concept descriptions, meaning that every
individual of C is also a D. Objects in the Abox are
referred to by a finite number of individual names and
these names may be used in assertional statements
a : C (meaning the individual a is a member of concept
C).

2.2 Description logic programming

In this work we are only interested in the reasoning
task known as instance checking that refers to deter-
mining if an individual a is a member of a concept C.
Assigning semantics to a DL ontology can be done
based on that DL is isomorphic with first-order logic
restricted to two variables. Then, C v D can be in-
terpreted as the formula (∀x)(c(x)→ d(x)) and a : C
as c(a). Description Logic Programming (DLP) ap-
proaches [14] take advantage of this to interpret those
expressions as the Prolog rules “d(X) :- c(X).” and
“c(a).”, resp. Therefore instance checking of a is a
member of C reduces to proving the goal “← c(a)”.

2.3 Possibilistic description logics

We now recall the fundamentals of possibilistic de-
scription logic ontologies [15, 16]. A possibilistic DL
ontology is a set of possibilistic axioms of the form
(ϕ,W (ϕ)) where ϕ is an axiom expressed in LDL
and W (ϕ) ∈ [0,1] is the degree of certainty (or prior-
ity) of ϕ . Namely, a possibilistic DL ontology Σ is
such that Σ = {(ϕi,W (ϕi)) : i = 1, . . . ,n}. Only some-
what certain information is explicitly represented in
a possibilistic ontology. That is, axioms with a null
weight (W (ϕ) = 0) are not explicitly represented in
the knowledge base. The weighted axiom (ϕ,W (ϕ))
means that the certainty degree of ϕ is at least equal
to W (ϕ). A possibilistic DL ontology Σ will also
be represented by a pair Σ = (T,A) where elements
in both T and A may be uncertain. Note that if we
consider all W (ϕi) = 1, then we find a classical DL
ontology Σ∗ = {ϕi : (ϕi,W (ϕi)) ∈ Σ}. We say that Σ

is consistent if the classical ontology obtained from
Σ by ignoring the weights associated with axioms is
consistent, and inconsistent otherwise. Notice that
the weights W (·) for axioms must be provided by the
knowledge engineer that designs the knowledge base,
thus providing the relative importance of axioms/rules
and assertions/facts.

Example 1. (Originally presented in [17].) Let Σ1 =
(T,A) be the ontology modeling a variation of the
famous Tweety example from the non-monotonic litera-
ture. It expresses that a bird usually flies, all penguins
are birds, penguins do not usually fly, birds with bro-
ken wings normally do not fly either, and pilots can
almost always fly. It is known that Tweety is a penguin
with almost certainly a broken wing and most likely a
pilot. Formally:

T =


(Birdv Flies,0.6),
(Penguinv Bird,1.0),
(Pilotv Flies,0.9),
(Penguinv ¬Flies,0.8),
(BirduBrokenWing v ¬Flies,0.7)


A =

 (TWEETY : BrokenWing,0.8),
(TWEETY : Penguin,1.0),
(TWEETY : Pilot,0.9)


In Σ∗1, because Tweety a penguin (and therefore a

bird), he is both a member of Flies and ¬Flies, mean-
ing that he is a member of ⊥. Traditional reasoners
are not able to infer anything from such an inconsis-
tent ontology, thus invalidating even reasoning with
consistent subsets of the offending ontology.

3 Dung-style ontology reasoning in pos-
sibilistic argumentation

We now recall how to reason with possibly inconsis-
tent ontologies by using Dung-style argumentation, an
approach we originally explored in [17].

3.1 Notions of possibilistic defeasible logic
programming

The P-DeLP [18] language L is defined from a set
of ground fuzzy atoms (fuzzy propositional variables)
p,q, . . . along with the connectives ∼ (strong nega-
tion), ∧ (written as a comma in Prolog clauses) and←.
A literal L ∈L is a ground (fuzzy) atom ∼q, where q
is a ground (fuzzy) propositional variable. A rule in
L is a formula of the form Q← L1∧ . . .∧Ln, where
Q,L1, . . . ,Ln are literals in L . When n = 0, the for-
mula Q← is called a fact. The term goal will refer to
any literal Q ∈L . Facts, rules and goals are the well-
formed formulas in L . A certainty-weighted clause,
or simply weighted clause, is a pair (ϕ,α), where ϕ is
a formula in L and α ∈ [0,1] expresses a lower bound
for the certainty of ϕ in terms of a necessity measure.

The proof method for P-DeLP formulas, noted ‘,
is based on the generalized modus ponens rule, that
from (P←Q1, . . . ,Qk,γ) and (Q1,β1), . . . ,(Qk,βk) al-
lows to infer (P,min(γ,β1, . . . ,βk)). A clause (ϕ,α)

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

118

is referred to as certain when α = 1 and uncertain oth-
erwise. A set of clauses Γ is deemed as contradictory,
denoted Γ ‘ ⊥, when Γ ‘ (Q,α) and Γ ‘ (∼Q,β),
with α > 0 and β > 0, for some atom Q in L . A pro-
gram is a set of weighted rules and facts in L in which
certain and uncertain information is distinguished. As
an additional requirement, certain knowledge is re-
quired to be non-contradictory. A P-DeLP program
P (or just program P) is a pair (Π,∆), where Π is
a non-contradictory finite set of certain clauses, and
∆ is a finite set of uncertain clauses. We build ar-
guments A for Q with weight γ , noted as hA ,Q,γi,
inductively: If (Q,γ) is a fact, then h{(Q,γ)},Q,γi
is an argument; from (P ← Q1, . . . ,Qn,γ) and
n arguments hA1,Q1,β1i, . . . , hAn,Qn,βni, when
Q1, . . . ,Qn,P is consistent, then we get h

Sn
i=1 Ai ∪

{(P← Q1, . . . ,Qn,γ)},P,min(β1, . . . ,βn,γ)i.
Conflict among arguments is formalized by the no-

tions of counterargument and defeat. Let P be a
program, and let hA1,Q1,α1i and hA2,Q2,α2i be two
arguments in P . We say that hA1,Q1,α1i counterar-
gues hA2,Q2,α2i iff there exists a subargument (called
disagreement subargument) hS ,Q,β i of hA2,Q2,α2i
such that Π∪{(Q1,α1),(Q,β)} is contradictory. The
literal (Q,β) is called disagreement literal. Defeat
among arguments involves the consideration of pref-
erence criteria defined on the set of arguments. The
criterion applied here is based on necessity measures
associated with arguments. Let P be a program, and
let hA1,Q1,α1i and hA2,Q2,α2i be two arguments
in P . We will say that hA1,Q1,α1i is a defeater
for hA2,Q2,α2i iff hA1,Q1,α1i counterargues argu-
ment hA2,Q2,α2i with disagreement subargument
hA ,Q,αi, with α1 ≥ α . If α1 > α then hA1,Q1,α1i
is called a proper defeater, otherwise (α1 = α) it is
called a blocking defeater. Notice that we digress
from the original P-DeLP formalism of Chesñevar et
al. [18] in that (i) we include facts in the support of
arguments and (ii) facts are allowed to have a weight
different than one (so allowing them to be considered
as presumptions).

Example 2. Consider again the ontology Σ1
presented in Example 1. This ontology is inter-
preted as the equivalent possibilistic program P1
formed by the rules (brokenWing(tweety),0.8),
(penguin(tweety),1.0), (pilot(tweety),0.9),
(flies(X) ← bird(X),0.6), (bird(X) ←
penguin(X),1.0), (∼ flies(X) ← penguin(X),0.8),
(∼ flies(X) ← bird(X),brokenWing(X),0.7) and
(flies(X) ← pilot(X),0.9). Exactly 8 argu-
ments can be built from this program (notice
that they coincide with the ones presented
in Example 3): hA1,brokenWing(tweety),0.8i
where A1 = {(brokenWing(tweety),0.8)};
hA2,penguin(tweety),1.0i where A2 =
{(penguin(tweety),1.0)}; hA3,pilot(tweety),0.9i
where A3 = {(pilot(tweety),0.9)};
hA4,bird(tweety),1.0i where A4 =

{(bird(tweety) ← penguin(tweety),1.0)} ∪ A2;
hA5,∼flies(tweety),0.8i where A5 = {(∼
flies(tweety) ← penguin(tweety),0.8)} ∪
A2; hA6,∼flies(tweety),0.7i
where A6 = {(∼ flies(tweety) ←
bird(tweety),brokenWing(tweety),0.7)} ∪ A1 ∪ A4;
hA7,flies(tweety),0.9i where A7 = {(flies(tweety)←
pilot(tweety),0.9)}∪A3, and hA8,flies(tweety),0.6i
where A8 = {(flies(tweety) ← bird(tweety),0.6)} ∪
A4. The reader should notice that the attacks among
these arguments are exactly those presented in
Fig. 1 and that these attacks are made into final
conclusions (thus they are direct attacks). Nonetheless
the reasoning framework presented here and the
application we built also allow modeling attacks into
premises (i.e. indirect attacks).

3.2 Dung-style abstract argumentation

Abstract argumentation frameworks [19] do not pre-
suppose any internal structure of arguments, thus con-
sidering only the interactions of arguments by means
of an attack relation between arguments. An abstract
argumentation framework A F is a pair (Arg,→)
where Arg is a set of arguments and→ is a relation of
Arg into Arg. For two arguments A and B in Arg, the
relation A →B means that the argument A attacks
the argument B. Abstract argumentation frameworks
can be concisely represented by directed graphs, where
arguments are represented as nodes and edges model
the attack relation.

Example 3. Consider the argumenta-
tion framework A F 3 = (Arg,→) where
Arg = {A1,A2,A3,A4,A5,A6,A7,A8} and
→= {(A5,A8),(A6,A8), (A7,A5), (A7,A6)}.
The framework is shown graphically in Fig. 1 and,
although it is not necessary from a mathematical
viewpoint, we can assign meaning to the above
arguments to provide some intuition (notice that these
arguments coincide with the ones in Example 2):
A1 (for “Tweety has a broken wing”); A2 (for the
conclusion “Tweety is a penguin”); A3 (supporting
that “Tweety is a pilot”); A4 (expressing that “Tweety
is a bird”); A5 (an argument for “Tweety does not fly
because he is a penguin and penguins do not usually
fly”); A6 (that says that “Tweety does not fly because
he has a broken wing”); A7 (for “Tweety flies because
he is also a pilot”), and finally A8 (for “Tweety flies
because he is a bird and birds normally fly”).

Semantics are usually given to abstract argumenta-
tion frameworks by means of extensions. An extension
E of an argumentation framework A F = (Arg,→)
is subset of Arg that gives some coherent view on the
argumentation underlying A F . In this work, we will
reason under grounded semantics despite that other se-
mantics have been proposed. Let A F = (Arg,→) be
an argumentation framework. An extension E ⊆ Arg
is conflict-free iff there are no A ,B ∈ E with A →B.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

119

A8

A5 A6

A7A2

A1 A3

A4

Figure 1: Abstract argumentation framework pre-
sented in Example 3

An argument A ∈ Arg is acceptable with respect to
an extension E ⊆ Arg iff for every B ∈ Arg with
B → A there is a A 0 ∈ E with A 0 → B. An ex-
tension E ⊆ Arg is admissible iff it is conflict free and
all A ∈ E are acceptable with respect to E. An exten-
sion E ⊆ Arg is complete iff it is admissible and there
is no A ∈ Arg\E that is acceptable with respect to E.
An extension E ⊆ Arg is grounded iff it is complete
and E is minimal with respect to set inclusion.

The intuition behind admissibility is that an argu-
ment can only be accepted if there are no attackers
that are accepted and if an argument is not accepted
then there has to be an acceptable argument attack-
ing it. The idea behind the completeness property
is that all acceptable arguments should be accepted.
The grounded extension is the minimal set of accept-
able arguments and uniquely determined. It can be
computed as follows: first, all arguments that have
no attackers are added to the empty extension E and
those arguments and all arguments that are attacked by
one of these arguments are removed from the frame-
work; then the process is repeated; if one obtains a
framework where there is no unattacked arguments,
the remaining arguments are also removed.

Example 4. Consider again the argumentation
framework A F 3 presented in Example 3. The
grounded extension E of A F 3 is given by E =
{A1,A2,A3,A4,A7,A8}.

3.3 Expressing possibilistic DL ontologies as
possibilistic logic programs

Grosof et al. [14] provide a way of expressing a subset
of Description Logic ontologies in logic programming,
namely the description logic programming subset of
DL that can be expressed as Horn knowledge bases.
The idea consist of expressing both DL assertional
statements and terminological axioms as equivalent
Horn clauses. We will explain only the part of the
algorithm relevant to this work.

Given an ontology Σ = (T,A), for every terminolog-
ical axiom or assertional statement (ϕ,W (φ)) we will
generate a possibilistic axiom (T (ϕ),W (ϕ)), where
T (·) is the transformation function from the language
of description logics to the language of Horn clauses.
The specification of the T is as follows: Assertional
statements in A of the form a : C are expressed as facts

c(a). We obtain an equivalent ontology composed
only of inclusion axioms of the form C1u . . .uCn vD
which are expressed as Horn clauses of the form
d(X)← c1(X), . . . ,cn(X). Given a possibilistic DL
ontology Σ, Σ is expressed as an equivalent P-DeLP
program P . With this program, a grounded extension
E will be computed. If (c(a),α) belongs to E then
we will say that the individual A is a member of the
concept C with certainty degree α .

Example 5. Recall from Example 4 that E =
{A1,A2,A3,A4,A7,A8}. Therefore we can affirm
that, from A1, TWEETY is a member of BrokenWing
with certainty degree 0.8; from A2, TWEETY is a
member of Penguin with certainty degree 1.0; from
A3, TWEETY is a member of Pilot with certainty de-
gree 0.9; from A4, TWEETY is a member of Bird with
certainty degree 1.0; from A7, TWEETY is a mem-
ber of Flies with certainty degree 0.9, and from A8,
TWEETY is a member of Flies with certainty degree
0.6.

From A7 and A8, as Tweety is both a member of
Flies with both degrees 0.6 and 0.9. In the next section,
we will see how to reconcile these two degrees into
only one by using argument accrual.

4 Ontology reasoning with argument ac-
crual

Now we deal with the problem of accruing arguments
for justifying the membership of individuals to con-
cepts, thus redefining the task of instance checking by
means of argument accrual. Our approach relies in
previous work of Gómez Lucero et al. by presenting a
variation of their approach that we apply to ontology
reasoning. Gómez Lucero et al. [3] presented an ap-
proach to model accrual of arguments in a possibilistic
setting where, given different arguments supporting
the same conclusion, they are able to accumulate their
strength in terms of possibilistic values. For this, they
define the notion of accrued structure whose necessity
degree is computed in terms of two mutually recursive
functions: f+

Φ
(·) (the accruing function) and f MP

Φ
(·)

(that propagates necessity degrees). The latter is pa-
rameterized w.r.t. a user-defined function ACC that
supports non-depreciation (i.e. accruing arguments
results in a necessity degree no lower than any single
argument involved in the accrual) and maximality (i.e.
accrual means total certainty only if there is an argu-
ment with necessity degree 1). We recall the notion of
argument accrual as interpreted by [3]:

Definition 1. Let P be a P-DeLP program and let
Ω be a set of arguments in P supporting the same
conclusion H, i.e. Ω= {hA1,H,α1i, . . . ,hAn,H,αni}.
The accrued structure A S H for H is a 3-uple
[Φ,H,α], where Φ = A1 ∪ . . . ∪An and α is ob-
tained as follows. Let Q be a literal in Φ and let

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

120

(ϕ1,β1), . . . ,(ϕn,βn) be all the weighted clauses in Φ

with head Q, then

f+
Φ
(Q) = ACC(f MP

Φ (ϕ1), . . . , f MP
Φ (ϕn)).

Let (ϕ,β) be a weighted clause in Φ, whenever ϕ is
a fact Q then f MP

Φ
(ϕ) = β but if ϕ = Q← P1, . . . ,Pn

then f MP
Φ

(ϕ) = min(f+
Φ
(P1), . . . , f+

Φ
(Pn)). And ACC

is the one-complement accrual: ACC(α1, . . . ,αn) =
1−∏

n
i=1 (1−αi).

Given [Φ,H,α] and [Θ,K,γ], [Θ,K,γ] is an accrued
substructure if Θ ⊆ Φ. Also [Θ,K,γ] is a complete
accrued substructure of [Φ,H,α] iff for any other ac-
crued substructure [Θ0,K,γ 0] of [Φ,H,α] it holds that
Θ0⊂Θ. We say [Ψ,K,β] attacks [Φ,H,α] at literal H 0

iff there is a complete accrued substructure [Φ0,H 0,α 0]
of [Φ,H,α] such that K = H 0 and β > α 0 (· stands for
the complement operator where P is ∼P and ∼P is P).

Definition 2. Let P be a possibilistic logic pro-
gram. Let Accruals(P) be the set of complete
accrued structures of P . Let A S F (P) =
(Accruals(P),attacks) be the argumentation frame-
work induced by the accruals of P where attacks⊆
Accruals(P)×Accruals(P). The extension of P
is defined as the grounded extension of A S F (P)
where attacks stands for the attack relation between
complete accrued structures.

Notice that the notions of both attack and valid con-
clusions of the system presented here differ from those
of [3], thus leading to a different behavior.

Example 6. Consider again the ontology Σ1 and its
interpretation as the possibilistic program P1. The fol-
lowing complete accrued structures can be computed
from P1: A S 1 = [A2,penguin(tweety),1.0],
A S 2 = [A7 ∪ A8,flies(tweety),0.96],
A S 3 = [A3,pilot(tweety),0.9], A S 4 =
[A1,brokenWing(tweety),0.8], A S 5 =
[A5 ∪ A6,∼ flies(tweety),0.94] and A S 6 =
[A4,bird(tweety),1.0]. We show A S 2 and A S 5
in Fig. 2. In this case A S 2 attacks A S 5 at
the literal ∼ flies(tweety) (see Fig. 3). There-
fore the grounded extension of A S F (P1) is
{A S 1,A S 2,A S 3,A S 4, A S 6}.

Definition 3. Given a possibilistic ontology Σ, a con-
cept C and an individual a, we say that a is member
of C with certainty degree α iff there is a complete
accrued structure for [Φ,c(a),α] in the grounded ex-
tension of A S F (T (Σ)).

Example 7. Consider again the ontology Σ1, T (Σ1)
is the program P1. The complete accrued structures
from this program are those presented in Example 6.
As A S 2 = [A7 ∪A8,flies(tweety),0.96] belongs to
the grounded extension of accrued structures of P1,
then we conclude TWEETY is a member of Flies with
certainty degree 0.96.

Property 1. When each accrued structure is formed
by exactly one argument, the grounded extension of
the argumentation framework induced by the program
coincides with the argumentation framework induced
from the accrued program.

Proof: Let Σ be a possibilistic ontology and P be
T (Σ). Suppose that there is only one argument A in
P with certainty degree α supporting H. Then the
accrued structure A S for H is formed only by A .
Because of how f+

Φ
(H) is defined, the certainty degree

of A S is also α . Then the graph of the argumentation
framework formed by arguments is identical to the ar-
gumentation framework formed by accrued structures.
Therefore their grounded extensions coincide.

5 Enactment of the proposed approach

In order to enact the approach proposed in
this work, we developed a Java-based imple-
mentation that extends the one already pre-
sented in [17]. This application can be down-
loaded from the author’s institutional site at
http://cs.uns.edu.ar/~sag/engine-v2/. The
implementation also provides the functionality of
loading several examples, editing them, obtaining
the equivalent P-DeLP program of a given weighted
ontology. In order to give a text representation for
possibilistic DL ontologies, in [17] we proposed
a RACER-like syntax based on the representation
language for ontologies that allows a knowledge
engineer to add labels for specifying the weight of
each inclusion axiom. The system also allows for
computing grounded extensions and also provides a
graphical representation of the argumentation frame-
work, individual arguments and accrued structures
based on the D3.JS and Dracula Javascript libraries.
We show an snapshot of the reasoner’s user interface
in Fig. 6. With this, we were able to replicate the
accrued structures presented by [3]. Based on the
experience gained by testing examples, we argue
that this approach presents a more complex way to
compute the vertexes of the argumentation framework
but the resulting graph is smaller, thus leading to a
much simpler reasoning framework. We explore the
details of our approach in the rest of this section.

5.1 Scripting languages for possibilistic on-
tologies and programs

In order to give a text representation for possibilistic
DL ontologies, we propose a LISP-like syntax based
on the representation language for ontologies of the
RACER reasoner. Our proposal permits a knowledge
engineer to add labels for specifying the weight of each
axiom. Notice as the system presented in this work is
a running prototype, we have only implemented the
constructors for declaring the signature of the ontol-
ogy (viz. the (signature :atomic-concepts lst1

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

121

flies(tweety)0.96

pilot(tweety)0.9

true1.0

bird(tweety)1.0

penguin(tweety)1.0

true1.0

∼ flies(tweety)0.94

penguin(tweety)1.0

true1.0

bird(tweety)1.0

penguin(tweety)1.0

true1.0

brokenWing(tweety)0.8

true1.0

Figure 2: Accrued structures A S 2 and A S 5 from P1 (Notice that the leftmost branch of A S 5 stands for a
sub-structure for ∼flies(tweety) based on the argument A5 while the two rightmost branches for another based on
the argument A6.)

A S 2

A S 5

A S 1

A S 4

A S 3

A S 6

Figure 3: Abstract argumentation framework
A S F (P1) of Example 6

(signature
:atomic-concepts (bird penguin flies

broken wing pilot)
:individuals (tweety)
)

(instance tweety bird 1.0)
(instance tweety broken wing 0.8)
(instance tweety penguin 1.0)
(instance tweety pilot 0.9)

(implies bird flies 0.6)
(implies penguin bird 1.0)
(implies penguin (not flies) 0.8)
(implies (and bird broken wing) (not flies) 0.7)
(implies pilot flies 0.9)

Figure 4: Racer script for the Tweety ontology

:individuals lst2) element expressing the list lst1
of atomic concepts and the list lst2 of names of in-
dividuals), the assertional class statements (viz. the
(instance a C α) element asserting that an indi-
vidual a is a member of a class C with a certain degree
α), and the inclusion axioms (viz. the (implies C
D α) element expressing that a concept C is a sub-
concept of another concept D with a certain degree
α). Besides, only the operators for the complement
of a concept (viz. not) and conjunction of concepts
(viz. and) are supported. In Fig. 4, we present the
Racer-like script for the ontology of Example 1.

Our approach to provide a text representation for
possibilistic programs is simple and and follows
guidelines of DeLP and ASPIC. Facts of the form
(p(a),α) are codified as “p(a) <- true α” and
rules of the form (p(X)← q1(X), . . . ,qn(X),α) are
written as “p(X) <- q1(X), ..., qn(X) α”. Be-
sides, strong negation of atoms p(X) is represented
in the usual way as ~p(X). As an example, in Fig. 5,
we present the PDeLP-like script for the program of
Ex. 2.

broken wing(tweety) <- true 0.8
penguin(tweety) <- true 1.0
pilot(tweety) <- true 0.9
flies(X) <- bird(X) 0.6
bird(X) <- penguin(X) 1.0
~flies(X) <- penguin(X) 0.8
~flies(X) <- bird(X), broken wing(X) 0.7
flies(X) <- pilot(X) 0.9

Figure 5: P-DeLP script for the Tweety ontology

Figure 6: Snapshot of the GUI

5.2 User interface

In order to recreate our experiences, the user can down-
load a zip file containing an executable Java JAR file
containing the engine for reasoning with potentially
inconsistent possibilistic ontologies. Notice that this
is a rudimentary prototype and the parser is unforgiv-
ing to errors if it notices them at all. So, the user can
edit and modify the preloaded examples but has to be
sure that their syntax is correct before executing the
reasoning engine. Notice also that Racer-like axioms
and possibilistic logic programming rules have to be
“one-liners” (i.e. they cannot be split in two or more
lines).

The program requires Java running environment ver-
sion 1.7 or higher installed in the user’s computer. The
user interface has three text areas: leftmost (labeled
as “Ontology Racer-like code”), middle (labeled as
“Possibilistic program code”) and rightmost (labeled
as “Output”).

In the leftmost area, the user can preload (or type or
paste) a possibilistic ontology. The program offers four
preloaded examples, that can be loaded by pressing

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

122

(signature
:atomic-concepts (man mortal)
:individuals (socrates)

)
(instance socrates man 1.0)
(implies man mortal 1.0)

Figure 7: Racer script for the Socrates ontology

(signature
:atomic-concepts (pacifist republican quaker)
:individuals (nixon)

)
(instance nixon republican 1.0)
(instance nixon quaker 1.0)
(implies republican (not pacifist) 0.5)
(implies quaker pacifist 0.5)

Figure 8: Racer script for the Nixon’s Diamond ontol-
ogy

one the four buttons “Load Socrates”, “Load Nixon”,
“Load Highlander”, “Load Tweety” and “Load EC-
SQARU 2009” whose meaning is explained below.
In every case, the user would be able to automati-
cally translate the ontologies into PDeLP, compute
the grounded extensions (with or without accrual of
arguments), and see graphically and textually the com-
position of arguments, accrued structures and argu-
mentation graphs.

The “Load Socrates” button corresponds to the clas-
sical Prolog language example: Socrates is a man, and
all men are mortal. (See Fig. 7.)

The “Load Nixon” button corresponds to the classi-
cal Nixon Diamond example: Nixon is both a Quaker
and a Republican. Republicans are not pacifists. And
Quakers are pacifists. (See Fig. 8.)

The “Load Highlander” button corresponds to a
modelization of the Highlander the Series universe
where mortal and immortal men coexist: Joe is a man.
Duncan is both a man and a Highlander. Men are
mortal. Highlanders are immortals. (See Fig. 9.)

The “Load Tweety” button corresponds to Σ1 in
Fig. 4. Finally, the “Load ECSQARU 2009” button
loads an ontology that codifies the running example
of Gmez Lucero et al. [3] (see Fig. 10); our prototype
is able to find the same accrued structures that they
report.

In the middle area, by pressing the “Translate ontol-
ogy” button, the user can see the ontology interpreted
as a possibilistic logic program (in the middle text
area). In the rightmost area, the user will see the ar-

(signature
:atomic-concepts (highlander man mortal)
:individuals (duncan joe)

)
(instance joe man 1.0)
(instance duncan man 1.0)
(instance duncan highlander 1.0)
(implies man mortal 0.6)
(implies (and man highlander) (not mortal) 0.8)

Figure 9: Racer script for the Highlander The Series
ontology

(signature
:atomic-concepts (p q s t u v w x y z)
:individuals (a)
)

(instance a p 1.0)
(instance a q 1.0)
(instance a t 1.0)
(instance a u 1.0)
(instance a v 1.0)
(instance a w 1.0)

(implies z x 0.7)
(implies v z 0.5)
(implies u y 0.3)
(implies p s 0.7)
(implies y x 1.0)
(implies w (not z) 0.4)
(implies p (not y) 0.4)
(implies t (not s) 0.9)
(implies t z 0.6)
(implies s (not z) 0.8)
(implies q (not x) 0.45)

Figure 10: Racer script for the ontology codifying the
example of Gómez Lucero et al.

Figure 11: Output of the engine in the console

guments belonging to the grounded extension of the
possibilistic program (for this you first have to press
the “Compute grounded extension” button). If the user
wants to consider transposes of strict rules (i.e. rules
with weight one), he has be sure to check “Want trans-
poses of strict rules”. The most important information
regarding how the program computes its answer will
be shown in the console nonetheless. See the part of
the output for the Tweety example in Fig. 11.

The contents of the leftmost and middle text areas
can be edited but being sure that the syntax is correct
before executing the engine. If the user wants to rea-
son by using accrual of arguments, he must check the
checkbox: “Do you want accrual?”. In this version,
the user can graphically see the graph of the argumen-
tation system (either with accrual or without it). To see
a particular argument, he has to specify the argument
ID and press the button labeled “Draw Argument”. We
show how the application displays both the tree for
the argument A6 from Example 2 in Fig. 12 and the
accrued structure A S 4 from Example 6 in Fig. 13.

The graph corresponding to the argumentation
framework can be seen by pressing the button labeled

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

123

Figure 12: Argument A6 as displayed by the reasoner

Figure 13: Accrued structure A S 4 as shown by the
reasoner

as “Show framework”. If the user is not considering
accrual of arguments, he will see a graph as shown in
Fig. 14. Instead, if the user considers reasoning with
accrual of arguments, then the system will output a
graph like the one in Fig. 15. Notice that in both cases
the initial graph can be customized by dragging its
vertexes and edges.

Figure 14: Framework of plain arguments as seen in
the reasoner

Figure 15: Framework of accrued structures as seen in
the reasoner

6 Related work

In previous works [7, 8, 9], Gómez et al. reviewed
related work concerning the topic of reasoning with
inconsistent ontologies. In this section, we will focus
exclusively on reviewing implementations of argumen-
tation systems based on Dung’s semantics. During the
last years, some approaches based on interpreting on-
tologies as logic programs have arisen [14] which are
collectively known as Description Logic Programming.
Gómez et al. [7, 9] have exploited this to reason on
possibly inconsistent ontologies into Defeasible Logic
Programming (DeLP). In this work, instead of relying
on the DeLP semantics, we propose reasoning with
arguments comparable by their relative weight via a
grounded semantics along with argument accrual.

Bryant et al. [10] discuss their current work on a pro-
totype light-weight Java-based argumentation engine
that can be used to implement a non-monotonic reason-
ing component in Internet or agent-based applications.
Likewise, our system is a Java-based implementation
of an argumentation engine based on the representa-
tion language of the P-DeLP but interpreting P-DeLP
with a Dung-style semantics. However, our engine is
not based on the Prolog engine even when the knowl-
edge representation language is somewhat similar and
is able to handle argument accrual.

Snaith and Reed [11] present TOAST, a system
that implements the ASPIC+ framework and accepts
a knowledge base and rule set with associated pref-
erence and contrariness information, returning both
textual and visual commentaries on the acceptability
of arguments in the derived abstract framework. The
system can be used as both a web front-end and a web
service. Our implementation only provides a graphical
user interface that can be run a stand-alone JAR file

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

124

requiring only to have installed a suitable Java run-
time environment. TOAST can compute grounded,
preferred and complete extensions but our system only
computes grounded extensions.

Tamani and Croitoru [12] introduce a quantitative
preference based argumentation system relying on AS-
PIC argumentation framework and fuzzy set theory.
The knowledge base is fuzzified to allow the experts
to express their expertise (premises and rules) attached
with grades of importance in the unit interval. Ar-
guments are attached with a score aggregating the
importance expressed on their premises and rules. Ex-
tensions are then computed and the strength of each of
which can also be obtained based on its strong argu-
ments. The strengths are used to rank fuzzy extensions
from the strongest to the weakest one, upon which
decisions can be made. Likewise, our approach allows
to express the importance of rules using numbers in
the unit interval following the path marked by P-DeLP.

7 Conclusions and Future Work

We have presented an approach for performing in-
stance checking in inconsistent possibilistic descrip-
tion logic ontologies based on argument accrual, lead-
ing to a more concise reasoning framework when in-
consistency is present but several arguments for in-
stance checking may coexist. Our approach involves
translating ontologies into the language of possibilistic
logic programming and grouping arguments for the
same conclusion via argument accrual. We have devel-
oped a Java-based implementation that allows the user
to input an ontology and select a reasoning mechanism
using argument accrual under a grounded semantics
based on Dung-style argumentation.

Our current approach has several limitations and ad-
dressing them is part of our future research work. For
instance, when computing the argument base of the
argumentation systems, as arguments are built bottom-
up from facts by applying the rules obtained from the
Tbox in a forward-chain fashion, the existence of re-
cursion in concept definitions may produce an infinite
base of arguments, thus producing an infinite loop in
the execution of the reasoning engine. To grasp this,
consider, for example, the existence of an Abox asser-
tion (a : P,1) and a Tbox inclusion axiom of the form
(Pv P,0.7), this situation generates an infinite number
of arguments for p(a) with weight 0.7 (this of course
could be avoided with a simple check but it is not cur-
rently implemented; notice however that systems with
an infinite number of arguments are of research inter-
est at least from a theoretical point of view). Besides,
in our implementation, we only implemented direct
attack between pairs of accrued structures; implement-
ing the full approach of [3] (in which accruals are
weakened when attackers are discovered) in the con-
text of Dung-based structured argumentation requires
further research. All things considered, our approach

leads to a much cleaner reasoning framework when
several arguments supporting the membership of a cer-
tain individual to a certain class coexist; nonetheless,
allowing a progressive weakening of accrued struc-
tures would lead to a much more flexible reasoning
framework to model the dynamics of reasoning with
ontologies. Additionally, our current implementation
only deals with grounded semantics, so another im-
provement of our proposal involves the implementa-
tion of other argumentation extension-based semantics
for having additional strategies for computing the jus-
tification states of arguments and accrued structures
(e.g. stable, preferred, stage, semi-stable, ideal, CF2,
or prudent semantics).

Acknowledgements

This research is funded by Secretarı́a General de Cien-
cia y Técnica, Universidad Nacional del Sur, Argentina
and by Comisión de Investigaciones Cientı́ficas de la
Provincia de Buenos Aires (CIC-PBA), Argentina.

Competing interests

The author has declared that no competing interests
exist.

References

[1] X. Zhang, G. Xiao, Z. Lin, and J. V. den Bussche,
“Inconsistency-tolerant reasoning with OWL-DL,”
International Journal of Approximate Reasoning,
vol. 55, pp. 557–584, 2014.

[2] T. J. M. Bench-Capon and P. E. Dunne, “Ar-
gumentation in artificial intelligence,” Artificial
Intelligence, vol. 171, no. 10-15, pp. 619–641,
2007.

[3] M. G. Lucero, C. I. Chesñevar, and G. R. Simari,
“Modelling Argument Accrual in Possibilistic
Defeasible Logic Programming,” in ECSQARU
2009, LNAI 5590 (C. S. ad G. Chemello, ed.),
pp. 131–143, 2009.

[4] S. A. Gómez, “On the Application of Argument
Accrual to Reasoning with Inconsistent Possi-
bilistic Ontologies,” in Proc. of the XXII Argen-
tinian Conference of Computer Science (CACIC
2016), pp. 14–23, Universidad Nacional de San
Luis, oct 2016.

[5] B. Verheij, Rules, Reasons, Arguments: Formal
studies of argumentation and defeat. PhD thesis,
University of Maastricht, 1996.

[6] I. Letia and A. Groza, “Modelling Imprecise Ar-
guments in Description Logics,” Advances in
Electrical and Computer Engineering, vol. 9,
no. 3, pp. 94–99, 2009.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

125

[7] S. A. Gómez, C. I. Chesñevar, and G. R.
Simari, “Reasoning with Inconsistent Ontologies
Through Argumentation,” Applied Artificial In-
telligence, vol. 1, no. 24, pp. 102–148, 2010.

[8] S. A. Gómez and G. R. Simari, “Merging of on-
tologies using belief revision and defeasible logic
programming,” Inteligencia Artificial, vol. 16,
no. 52, pp. 16–28, 2013.

[9] S. A. Gómez, C. I. Chesñevar, and G. R. Simari,
“ONTOarg: A Decision Support Framework
for Ontology Integration based on Argumenta-
tion,” Expert Systems with Applications, vol. 40,
pp. 1858–1870, 2013.

[10] D. Bryant, P. J. Krause, and G. Vreeswijk, “Ar-
gue tuProlog: A Lightweight Argumentation En-
gine for Agent Applications,” in Computational
Models of Argument: Proceedings of COMMA
2006, 2006.

[11] M. Snaith and C. Reed, “TOAST: online ASPIC+
implementation,” in Proceedings of the 4th Inter-
national Conference on Computational Models
of Argument (COMMA 2012), IOS Press, 2012.

[12] N. Tamani and M. Croitoru, “Fuzzy argumenta-
tion system for decision support,” in Information
Processing and Management of Uncertainty in
Knowledge-Based Systems, vol. 442, pp. 77–86,
Communications in Computer and Information
Science, 2014.

[13] F. Baader, D. Calvanese, D. McGuinness,
D. Nardi, and P. Patel-Schneider, eds., The De-
scription Logic Handbook – Theory, Implemen-
tation and Applications. Cambridge University
Press, 2003.

[14] B. N. Grosof, I. Horrocks, R. Volz, and S. Decker,
“Description Logic Programs: Combining Logic

Programs with Description Logics,” WWW2003,
May 20-24, Budapest, Hungary, 2003.

[15] S. Benferhat, Z. Bouraoui, S. Lagrue, and
J. Rossit, “Merging Inconmensurable Possibilis-
tic DL-Lite Assertional Bases,” in Proceedings
of the IJCAI Workshop 13 Ontologies and Logic
Programming for Query Answering (O. Papini,
S. Benferhat, L. Garcia, and M.-L. Mugnier,
eds.), pp. 90–95, 2015.

[16] S. A. Gómez, C. I. Chesñevar, and G. R. Simari,
“Using Possibilistic Defeasible Logic Program-
ming for Reasoning with Inconsistent Ontolo-
gies,” in Computer Science & Technology Series.
XVII Argentine Congress of Computer Science
Selected Papers (A. D. Giusti and J. Diaz, eds.),
pp. 19–29, 2012.

[17] S. A. Gómez, “Towards a practical implementa-
tion of a reasoner for inconsistent possibilistic de-
scription logic programming ontologies,” in Proc.
of the 2nd Argentinian Symposium of Ontologies
and their Applications (SAOA 2016), pp. 1–14,
SADIO–45 JAIIO, sep 2016.

[18] T. Alsinet, C. I. Chesñevar, and L. Godo, “A
level-based approach to computing warranted ar-
guments in possibilistic defeasible logic program-
ming,” in COMMA (P. Besnard, S. Doutre, and
A. Hunter, eds.), vol. 172 of Frontiers in Artifi-
cial Intelligence and Applications, pp. 1–12, IOS
Press, 2008.

[19] P. M. Dung, “On the aceptability of arguments
and its fundamental role in nonmonotonic rea-
soning and logic programming,” in Proceedings
of the 13th International Joint Conference in Ar-

tificial Intelligence (IJCAI), pp. 852–857, 1993.

Journal of Computer Science & Technology, Volume 17, Number 2, October 2017

126

