
A Metaheuristic Compendium for
Scheduling Problems

Carlos Bermudez1, Gabriela Minetti1, and Carolina Salto1,2

1 Facultad de Ingenieŕıa, Universidad Nacional de La Pampa
2 CONICET, Argentina

{minettig,saltoc}@ing.unlpam.edu.ar

Abstract. The flexible job shop scheduling problem (FJSSP) is a dif-
ficult and complex problem, proved to be NP-hard, in manufacturing
environments, because it has to assign each operation to the appropriate
machine besides sequencing operations on machines. Due to that com-
plexity, metaheuristics became the best choice to solve in practice this
kind of problem. Therefore, the aim of this paper is to offer a reliable
compendium in order to cover a wide algorithmic spectrum of different
techniques. Further, a study of their accuracy and computational effort is
carried out in order to achieve a behavior comparison. This paper shows
different algorithmic trends that can be observed through this analysis.

1 Introduction

Scheduling operations is one of the most critical issues in manufacturing pro-
cesses, being the Job Shop Scheduling Problem (JSSP) one of most important
and difficult problems [1]. Each job has to undergo multiple operations on the
various machines and each job has its own set of processing times and rout-
ing characteristics. The decision concerns how to sequence the operations on
the machines, so that the time needed to complete all the jobs (makespan) is
minimized. The possibility of selecting alternative routes among the machines is
useful in production environments where multiple machines are able to perform
the same operation (possibly with different processing times), as it allows the
system to absorb changes in the demand of work or in the performance of the
machines. When this factor is considered, the problem is known as Flexible Job
Shop Scheduling Problem (FJSSP).

Generally, the FJSSP is a more realistic production environment and then
has more practical applicability. However, the FJSSP is more complex (NP-hard
problem [2]) than the JSSP because of its additional decision to assign each op-
eration to the appropriate machine (routing) besides sequencing operations on
machines. Due to the mentioned complexity of FJSSP, the adoption of heuristic
methods is suggested because they produce reasonably good schedules in a rea-
sonable time, instead of looking for an optimum solution, also for small instances.
In recent years, the adoption of metaheuristics [3] has led to better results than
classical dispatching or greedy heuristic algorithms [4–6].

The main purpose of this paper is to offer a base reference for FJSSP compari-
son, using different metaheuristics in order to cover a wide algorithmic spectrum,

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

2

from trajectory methods to population-based methods. In this way, we obtain
a valuable compendium of approaches for FJSSP by specifying their qualities
from two points of view: first, adapting the metaheuristics to solve the prob-
lem, and, second, finding good quality schedules with a low computational ef-
fort. Consequently, the methodology followed in this empirical study consists in
adapting five metaheuristics to solve the FJSSP. We evaluate and compare each
of them on the well-known set of the problem instances. The planned analysis
and comparisons will help us to explain the result qualities and efficiency of
these metaheuristics to solve the FJSSP and also, to compare the best studied
metaheuristics with different proposals found in the literature.

The paper is organized as follows. In Section 2, we introduce the problem
formulation. In Section 3, we explain the adaptations of the selected metaheuris-
tics to solve the FJSSP. In the following section, we introduce the experimental
design and in Section 5, we evaluate the results. Further, in Section 6 we make a
comparison between these metaheuristics and the ones present in the literature.
Some final remarks and future research directions are given in Section 7.

2 The Flexible Job Shop Scheduling Problem

The flexible job shop can be described as follows. Let a set J = {J1, J2, ..., Jn} of
independent jobs. A job Ji is formed by a sequence of Oi1, Oi2, ..., Oini operations
to be performed one after the other according to the given sequence. Given a set
U = {M1,M2, ...,Mm} of machines, each operation Oij can be processed on a
subset Uij ⊆ U of compatible machines. We have partial flexibility if there exists
a proper subset Uij ⊂ U , for at least one operation Oij , while we have Uij = U
for each operation Oij in the case of total flexibility. The processing time of
each operation is machine-dependent. We denote with dijk the processing time
of operation Oij when executed on machine Mk. Pre-emption is not allowed and
the machines cannot perform more than one operation at a time. All jobs and
machines are available at time 0. The problem is to assign each operation to an
appropriate machine (routing problem), and to sequence the operations on the
machines (sequencing problem) in order to minimize the makespan. This measure
is the time needed to complete all the jobs, which is defined as Cmax = maxi{Ci},
where Ci is the completion time of job Ji.

3 Metaheuristics for FJSSP

In this section, we describe how the five metaheuristics used in this work are
adapted to solve the FJSSP. Two of them are trajectory-based metaheuristics
(Simulated Annealing and Iterated Local Search) and the remaining ones are
population-based metaheuristics (Genetic Algorithm, Cuckoo Search, and Im-
perialist Competitive Algorithm). All of them share two main common design
points: the representation of solutions handled by algorithms and the definition
of the objective function that will guide the search.

We use the encoding proposed by Bierwirth in [7], which is based on permu-
tation with repetitions. A solution, S, is a permutation of the set of operations

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

3

that represents a tentative ordering to schedule them, each one being represented
by its job number. For example, S = [2, 1, 1, 3, 2, 3, 1, 2] is a valid solution, which
corresponding operation sequence is O21, O11, O12, O31, O22, O32, O13, and O23.
In order to evaluate S, the fitness value is the makespan (Cmax) of this solution.
To compute this value, each operation Oij in S is assigned to a feasible machine
Mk in the subset Uij with the shortest completion time, and then the load of
Mk must be updated. As the initial solution we use a random procedure, mainly
because high performing construction heuristics for the FJSSP are unknown.

Finally, in order to make a fair comparison among these algorithms, they
must do the same computational effort in each run. This can be reached if they
are executed during the same time for each problem instance. As suggested in
the literature for JSSP, the total executed time is calculated as ExecT ime =
�O× (�O2)× 30, where �O is the total number of operations for a given instance.

3.1 Simulated Annealing

Simulated Annealing (SA) is a simple and general purpose Monte-Carlo method
which was developed for combinatorial optimization [8]. This version of SA gen-
erates an initial solution S0 in a random way, and a neighbor, S1, from S0 using
the exchange operator. This operator randomly selects two positions and their
respective operations are swapped if they belong to different jobs, since the
encoding is a permutation with repetitions. If S1 is worse than S0, S1 can be
accepted under the Boltzmann probability. In this way, at high temperatures (T)
the exploration of the search space is allowed. In contrast, at low temperatures
the algorithm only exploits a promising region of the search space. In order to
update T , the proportional cooling process [8] is used and it is applied after a
certain number of iterations given by the Markov Chain Length (MCL). Finally,
SA ends the search when the total executed time (ExecT ime) is reached.

3.2 Iterated Local Search

The Iterated Local Search (ILS) [9] is a simple but very effective metaheuristic.
To solve the FJSSP with ILS, we use the ideas proposed in [10]. The algorithm 1
begins the search from an initial solution x (line 2). After that, the main loop
of ILS starts, which consists in the application of local search and perturbation
procedures (lines 4-21). A local search procedure (LS) is applied to the current
solution x (line 5). This search stops as soon as a better solution x′ is found.
When no improvements are found, a counter (count) is increased (line 12). This
counter is set to zero each time the local search improves the current solution
(line 14). If the counter exceeds a certain threshold (threshold), a perturbation
mechanism is applied, with the aim of redirecting the search to more promising
regions of the solution space (lines 13-19). This mechanism is applied to the
current solution x a certain number of times (defined by nu move) generating a
set s̃(r) of candidate perturbation solutions. The best of them is selected as the
new current solution x.

The local search uses iteratively the exchange operator and consists in the
following steps. The operation Oij in the first position of the current solution
is exchanged by an operation located in a different randomly selected position
in the permutation. If this new permutation x′ has a better makespan (f(x′) <
f(x′)), then it will replace the solution x and the local search procedure ends.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

4

Algorithm 1 ILS to solve the FJSSP
1: count = 0;
2: Initialize x; {ILS generates a random solu-

tion}
3: xbest = x;
4: while stop criterion not met do
5: x′ = LS(x); {Interchange operator}
6: if f(x′) < f(x) then
7: x = x′;
8: if f(x′) < f(xbest) then
9: xbest = x′;
10: end if
11: else
12: count = count + 1;
13: if count > threshold then
14: count = 0;
15: for r = 1 to nu move do
16: s̃(r) = perturbation(x);
17: end for
18: x = s̃best;
19: end if
20: end if
21: end while
22: return xbest;

Algorithm 2 CS to solve the FJSSP
1: t = 0; {current generation}
2: initialize(H(t)1,N);
3: evaluate(H(t));
4: sort(H(t)); {Rank the solutions}
5: while (stop criterion not met) do
6: pos =random pos(1, N × pbest);
7: h = newCuckoo(H(t)pos);
8: pos1 =random pos(1, N)
9: if f(h) < f(H(t)pos1) then
10: H(t)pos1 = h;
11: end if
12: initialize(H(t)N×pa,N);
13: LS(H(t));
14: sort(H(t)); {Rank the solutions}
15: t = t + 1;
16: end while
17: return best solution

On the contrary, the procedure continues with the operation in the second po-
sition of the permutation, and so on. The search iterates in the majority of
the operations, without repetition. The perturbation mechanism consists in the
insertion operator. Basically, one job is randomly selected and inserted in a dif-
ferent position of the permutation, which is also randomly selected.
3.3 Cuckoo Search Algorithm
Cuckoo search (CS) algorithm is a novel metaheuristic [11], which is inspired
on the obligate brood parasitic behavior of cuckoo birds in combination with
the Lévy flight behavior. As the first step of the CS to solve the FJSSP (see
Algorithm 2), a population H(0) of N eggs (solutions) is randomly generated
(line 2). This initial population is evaluated and then sorted regarding the quality
of each solution (lines 3 and 4, respectively). After these steps, the main loop
follows. A cuckoo selects randomly a position pos from the pbest best solutions
in the current population H(t) (line 6). A new candidate solution h is generated
by perturbing the current H(t)pos solution following Lévy flights (line 7). The
new solution h can replace a randomly selected solution from H(t), following an
elitist selection strategy (lines 8-11). After that, a fraction pa of worse nests is
abandoned and new nests are built at new locations (solutions created following
a random process) (line 12). Afterwards, a local search step is applied to each
individual in H(t) with a pLS probability in order to improve the solution (line
13). At this step the elitist selection strategy is also used. Finally, the loop ends
with a sorting process which arranges the individuals in decreasing fitness value
(line 14), being the best solution the one present in position 0 of H(t).

To move from a current solution to an other one, the concept of Lévy flight is
used. A Lévy flight can be described as a random walk in which the step length
(distance between two solutions) is decided by certain probability distribution
functions which are heavily tailed. Following the ideas of Ouaarab et al.[12], three
different moves or operators, controlled directly by the value generated by Lévy

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

5

distribution, are used: exchange, insertion, and inversion. These operators are
traditional for the problem at hand and generate different move steps. Exchange
move is used for small perturbations and large ones are made by inversion move.
Insertion move is considered to introduce median perturbations.

3.4 Genetic Algorithm

Genetic Algorithms (GA) [13] simulate the evolution of individual structures via
the Darwinian natural selection process. The GA proposed to solve FJSSP begins
with the creation of an initial population of μ solutions in a random way, which
are then evaluated. After that, the population goes into a cycle (evolution), which
consists of the application of genetic operators, to create λ offspring, obtaining
a new population. Each parent for mating is selected using binary tournament
selection and they are recombined using a specially designed crossover known
as the Job-based Order Crossover (JOX) [14], under a certain probability (pc).
Each individual in the new population is mutated, with a certain probability
(pm), by using the exchange operator. Finally, each iteration ends by selecting μ
individuals to build up the new population from the set of (μ+ λ) existing ones
by using proportional selection (a typical selection method in this step).

3.5 Imperialist Competitive Algorithm

The Imperialist Competitive Algorithm (ICA) [15], is inspired by the imperialis-
tic competition. The Algorithm 3 shows the ICA to solve FJSSP which is based
on the ICA version presented in [16]. An initial set of countries (solutions) of
size NC is randomly created (line 1). Then the imperialistic countries are deter-
mined (lines 2-4). For that and after calculating the fitness function ci = 1/Cmax

for each country i, the best Nimp of them are selected as imperialists. The rest
Ncol = NC −Nimp countries are the colonies. These colonies are divided among
imperialists (lines 5-7), based on their power, in order to form the initial em-
pires. The power pj of each imperialistic country is first calculated according to

pj = cj/
∑Nimp

i=1 ci. The number of colonies of each imperialistic country (Ncolj)
is proportional to its power, and it is determined by Ncolj = pj ×Ncol. A total
of Ncolj colonies are randomly assigned to an imperialist j.

After this initialization process, the colonies in each of the empires start mov-
ing toward their relevant imperialist country. In this work, those movements are
accomplished by variation operators specially designed by the adopted represen-
tation. One of them is the JOX operator [14], which is applied in such a way
that a colony and its imperialist country are considered as parents. The other
one is the exchange operator; it is applied to each colony in order to simulate
a randomly deviated direction, as the original proposal of ICA. At this point
and following the improvement done in [16], ICA applies a local search to the
imperialist countries with a certain probability (pLS), using the same procedure
described in Section 3.2. When moving toward the imperialist country, a colony
might reach a position with higher fitness than its imperialist country (lines
13-15). In this case, the imperialist and the colony should change their posi-
tions. If there are several colonies better than the imperialist country, then the
imperialist will be replaced with the best colony.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

6

Algorithm 3 ICA to solve the FJSSP
1: initialize NC countries;
2: evaluate ci for each country;
3: select the best Nimp countries as imperialists;
4: choose the remaining Ncol countries as colonies;
5: compute pj for each empire;
6: determine Ncolj

for each empire j;

7: select the colonies for assigning to each imperialist in a random way;
8: while (stop criterion is not meet) do
9: apply JOX between each colony and its imperialist;
10: apply the exchange operator to each colony;
11: evaluate ci for all colonies;
12: apply a local search to jth imperialist;
13: if ci is better than cj then
14: exchange the positions between the imperialist and colony;
15: end if
16: compute tpj for each empire;
17: select the weakest colony from the weakest empire and give it to the strongest empire;
18: update Ncolj

of the weakest and strongest empires;

19: eliminate the empire with no colonies and Nimp = Nimp − 1;
20: end while
21: return the strongest imperialist;

Following, the total power of each empire (tpj) is computed including the
power of the imperialist country and the power of its colonies, according to

tpj = cj + σ ×∑Ncolj

i=1 ci [15] (line 16). The parameter σ ∈ [0, 1] causes the total
power of the empire to be determined by just the imperialist country (σ = 0) or
by the colonies increasing the σ value (σ > 0). We adopt the value of σ = 0.1
in our implementation as suggested in [15]. In line 17, ICA selects the empire
with the highest tpj as the best one and increase its number of colonies by one
(Ncolj +1). The colony of the weakest empire, k, with the lowest ci is considered
as the weakest one, and its number of colonies is reduced by one (Ncolk −1). The
number of empires also decreases by one (Nimp − 1) if the weakest empire k has
Ncolk = 0 (line 19). Finally, if more than one empire remained or the difference

between the previous best imperialist and the current one is greater than 1e
−6

,
and the execution time is less than the total time then go to line 8.

4 Experimental Design

In this section, we describe the experimental design used in this approach. We
have selected a wide range of instances used in the literature taking into account
their complexity, which is given by the number of jobs and machines, and the
wide variation of flexibility in the amount of available machines per operation.
In this sense, we considered the data set proposed by Brandimarte [17], since
the number of jobs ranges from 10 to 20, the number of machines belongs to
the set {4,15} and the number of operations for each job ranges from 5 to 15,
consequently the total number of operations ranges from 55 to 240. Taking into
account the flexibility varies between 1.43 and 4.10.

The parameter values of the proposed algorithms are selected based on some
preliminary trials. The selected parameters are those values that gave the best
results concerning both the solution quality and the computational effort. In

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

7

Table 1. Parametric configuration of the SA, ILS, GA, CS and ICA algorithms.

SA ILS GA CS ICA
MCL 100 threshold 15 μ 50 N 50 NC 50

un move 30 λ 50 pLS 0.1 pLS 0.1
pLS 0.1 pc 0.8 pbest 60% Nimp 5

pm 0.3 pa 20% σ 0.1

stop criterion �O × (�O
2) × 30

order to make a fair comparison among these algorithms, they are executed
during the same time for each problem instance. The parametric configuration
used in each algorithm is shown in Table 1.

Because of the stochastic nature of the algorithms, we performed 30 inde-
pendent runs of each test to gather meaningful experimental data and apply
statistical confidence metrics to validate our conclusions. As a no normal dis-
tribution is followed by the data, we used the Kruskal-Wallis (KW) test. This
statistical study allows us to assess whether or not there were meaningful differ-
ences between the compared algorithms with a confidence level of 99%.

5 Experimental Results

In this section, we analyze the quality of results considering the Cmax values
obtained for each algorithm described in Section 3 to solve the FSSSP instances.
Additionally, we study the hit rate and the distribution of the normalized gap
between the best solution found by each proposed metaheuristic and the best
known Cmax for each instance and for all algorithms.

Analyzing the algorithm performance from the hit rate obtained for each
of them (see Table 2), the general trend is that trajectory-based algorithms
are more efficient than population-based algorithms. SA obtains the highest hit
rate values in the majority of the instances. Regarding the population-based
algorithms, GA presents the highest mean hit values, followed by CS and ICA,
respectively.

Table 2. Hit rate obtained by SA,
ILS, GA, CS, and ICA for all FJSSP
instances.

Inst. SA ILS GA CS ICA
1 100.00 100.00 100.00 96.67 63.33
2 90.00 53.33 10.00 23.33 0.00
3 100.00 100.00 100.00 100.00 100.00
4 100.00 100.00 40.00 16.67 0.00
5 30.00 3.33 0.00 3.33 0.00
6 33.33 10.00 0.00 0.00 0.00
7 26.67 3.33 0.00 0.00 0.00
8 96.67 100.00 100.00 100.00 100.00
9 93.33 100.00 70.00 6.67 0.00

10 0.00 0.00 0.00 0.00 0.00
Mean 67.00 56.99 42.00 34.66 26.33

SA ILS GA CS ICA

0.
00

0.
10

0.
20

0.
30

G
ap

Fig. 1. Gap values obtained by SA, ILS,
GA, CS, and ICA considering all FJSSP
instances.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

8

Table 3. Mean execution time (sec.) to
find the best Cmax

Inst. SA ILS GA CS ICA KW
1 2.27 0.23 0.73 3.20 0.23 +
2 8.23 6.97 8.60 7.33 0.13 +
3 0.00 0.00 0.10 0.03 0.00 +
4 3.50 13.83 58.37 56.93 0.37 +
5 19.40 7.60 37.97 25.80 0.10 +
6 121.13 196.40 164.13 160.83 1.20 +
7 24.23 42.53 65.27 66.17 0.97 +
8 0.00 1.00 2.03 8.83 0.20 +
9 16.03 148.00 421.13 519.27 1.60 +

10 711.87 610.30 658.17 605.93 9.83 +
Mean 90.67 102.69 141.65 145.43 1.46 +

SA ILS GA CS ICA

0.
0e

+0
0

1.
0e

+0
7

2.
0e

+0
7

Ev
al

ua
tio

ns

Fig. 2. Total number of evaluations done
by running SA, ILS, GA, CS, and ICA
considering all FJSSP instances.

Complementary information to the previous analysis is the distribution of
the gap values shown by the algorithms. For that purpose, Figure 1 illustrates
these results by means of a box-plot graph. These results support the previous
analysis. This allows to remark that the trajectory-based algorithms achieve
schedules with the lowest Cmax values, solving the FJSSP more accurately than
the population-based ones.

Regarding the mean execution time to find the best Cmax, the results pre-
sented in Table 3 show that ICA is the fastest algorithm to find its best solutions
but their qualities are very poor, as observed in previous analysis. In general,
this algorithm ends because one empire conquers the remaining empires with
its colonies at the first iterations. As a consequence, ICA does not consume the
total execution time computed for each instance. Instead, the longest process-
ing time corresponds to CS and GA. In order to check the confidence of the
results a non-parametric test, the KW test, was applied (normality conditions
not met). In the last column of the Table 3, the results of this test are shown
where the symbol “+” indicates significant differences between the algorithms.
Consequently, a post-hoc statistic analysis reveals that CS, GA, and ILS present
a similar execution time to find the best solution, but it is noticeable that ILS
is able to find better quality solutions than the remaining ones (see Table 2).
On the other hand, ILS and SA have statistically similar execution times, but
exhibiting significant differences with the population-based algorithms.

Figure 2 shows the distribution of the total number of evaluations carried out
by each algorithm. We observe that the algorithms with more evaluations are
SA and CS, although SA outperforms CS from the result quality point of view
(see Table 2). This means that the SA procedure has a better balance between
exploration and exploitation than CS. Instead, ILS and GA do a statistically
similar total number of evaluations. However, ILS presents the best behavior,
obtaining good solutions in a low number of evaluations. These suggest that ILS
does a better exploration and exploitation during the search than GA. Finally,
ICA carried out the minimal total number of evaluations and this justifies its
poor performance to solve FJSSP.

Considering the quality of results and the computational effort of the algo-
rithms, we can observe two main groups of them and this division corresponds
to the classification of the metaheuristics: the trajectory-based algorithms (SA

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

9

Table 4. Comparison between SA and metaheuristics from the literature

inst SA PVNS TSPCB hGA BEDA IACO
1 40 40 40 40 40 40
2 26 26 26 26 26 26
3 204 204 204 204 204 204
4 60 60 62 60 60 60
5 172 173 172 173 172 173
6 58 60 65 60 60 60
7 139 141 140 140 139 140
8 523 523 523 523 523 523
9 307 307 310 307 307 307

10 200 208 214 205 206 208

and ILS) and the population-based ones (GA, CS, and ICA). The algorithms in
the first group outperforms the algorithms in the second one, showing a rela-
tively good trade-off between solution quality and computational effort. This is
highly related with the algorithmic procedure carried out by each one of these
metaheuristics and by the number of evaluations per iteration. Particularly, SA
obtains the best solution quality (the highest hit rate values and the lowest
gap values) in a low mean execution time, exhibiting between exploration and
exploitation.

6 Comparison with other algorithms

To determine the goodness of the metaheuristics considered in this work, this
section presents a comparison of the results from the best performing algorithm
(SA) with several competitive algorithms present in the literature. This allows
a comparative assessment of the algorithms for the FJSSP. In this comparison
different metaheuristics to solve the FJSSP are considered: i) a variable neighbor-
hood search (PVNS) [18], ii) a tabu search (TSPCB) [19], iii) a hybrid algorithm
combining chaos particle swarm optimization with genetic algorithm (hGA) [20],
iv) a bi-population based estimation of distribution algorithm (BEDA) [21], and
finally v) an ant colony optimization (IACO) [22].

The Cmax values of SA and the algorithms included in the comparison are
listed in Table 4. From the results, the Cmax values of SA are equal or lower than
the values of remaining algorithms for dealing with almost all ten instances. This
observation suggests that the SA developed in this work is a competitive algo-
rithm to solve the FJSSP. Comparisons regarding computational effort are hard
to be carried out because the majority of the works do not report the number
of evaluations and also, the hardware used for the experimentation has different
configurations. Consequently, the relative efficiency of the referred algorithms is
difficult to contrast in order to obtain meaningful comparisons.

7 Conclusion

In this article, we have presented a compendium of different metaheuristics in
order to solve the FJSSP. In this study two trajectory-based metaheuristics and
three population-based ones are included to give a wide spectrum of possible

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

10

solutions to the mentioned scheduling problem. The results indicate that the
trajectory-based metaheuristics were accurate and efficient for the FJSSP. In
the study carried out in this work, SA is the best performing algorithm to solve
the FJSSP. Moreover, when SA is contrasted with algorithms in the literature, it
also becomes in the best approach. As a consequence, SA gives accurate solutions
to this NP-hard problem in an efficient and competitive way.

As future research activities, we plan to widen the scope of the study by in-
cluding another set of instances with high dimensionality. Furthermore, variants
of the FJSSP with more constraints will be evaluated considering the approaches
developed in this article.

Acknowledgements

The authors acknowledge the support of Universidad Nacional de La Pampa,
and ANPCYT under contract PICTO 2011-0278 and the Incentive Program
from MINCyT. The third author is also funded by CONICET.

References

1. M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 3rd ed. Springer
Publishing Company, Incorporated, 2008.

2. M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity of flowshop and jobshop
scheduling,” Math. Oper. Res., vol. 1, no. 2, pp. 117–129, May 1976.

3. E.-G. Talbi, Metaheuristics: From Design to Implementation. Wiley, 2009.
4. G. Vilcot and J.-C. Billaut, “A tabu search and a genetic algorithm for solving a

bicriteria general job shop scheduling problem,” European Journal of Operational
Research, vol. 190, no. 2, pp. 398 – 411, 2008.

5. G. Zhang, X. Shao, P. Li, and L. Gao, “An effective hybrid particle swarm opti-
mization algorithm for multi-objective flexible job-shop scheduling problem,” Com-
puters & Industrial Engineering, vol. 56, no. 4, pp. 1309 – 1318, 2009.

6. G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm for the flexible
job-shop scheduling problem,” Expert Syst. Appl., vol. 38, pp. 3563–3573, 2011.

7. C. Bierwirth, “A generalized permutation approach to job shop scheduling with
genetic algorithms,” Operations-Research-Spektrum, vol. 17, pp. 87–92, 1995.

8. S. Kirkpatrick, C. G. Jr, and M. Vecchi, “Optimization by simulated annealing,”
Science, no. 220, pp. 671–680, 1983.

9. T. Sttzle, “Local search algorithms for combinatorial problems analysis, algorithms
and new applications,” DISKI Dissertationen zur Kunstliken Intelligenz, Sankt
Augustin, Germany, Tech. Rep., 1999.

10. B. Naderi, R. Ruiz, and M. Zandieh, “Algorithms for a realistic variant of flowshop
scheduling,” Computers & Operations Research, vol. 37, no. 2, pp. 236 – 246, 2010.

11. D. S. Yang X-S, “Engineering optimization by cuckoo search,” Int. Journal of
Mathematical Modelling and Numerical Optimisation, vol. 1, pp. 330–343, 2010.

12. A. Ouaarab, X.-S. Y. B. Ahiod, and M. Abbad, “Discrete cuckoo search algorithm
for job shop scheduling problem,” in 2014 IEEE International Symposium on Intel-
ligent Control (ISIC) Part of 2014 IEEE Multi-conference on Systems and Control,
2014, pp. 1872–1876.

13. D. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, 1989.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

11

14. R. Menćıa, M. R. Sierra, C. Menćıa, and R. Varela, “A genetic algorithm for job-
shop scheduling with operators enhanced by weak lamarckian evolution and search
space narrowing,” Natural Computing, vol. 13, no. 2, pp. 179–192, 2014.

15. E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive algorithm: An al-
gorithm for optimization inspired by imperialistic competition,” in Evolutionary
Computation, 2007. CEC 2007. IEEE Congress on, Sept 2007, pp. 4661–4667.

16. G. G. Minetti and C. Salto, “Imperialist competitive algorithm for the flowshop
problem,” in Anales del XXI Congreso Argentino de Ciencias de la Computacin,
2015, pp. 1–10.

17. P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu search,”
Annals of Operations Research, vol. 41, p. 157183, 1993.

18. M. Yazdani, M. Amiri, and M. Zandieh, “Flexible job-shop scheduling with par-
allel variable neighborhood search algorithm,” Expert Systems with Applications,
vol. 37, no. 1, p. 678687, 2010.

19. J.-Q. Li, Q.-K. Pan, P. N. Suganthan, and T. J. Chua, “A hybrid tabu search al-
gorithm with an efficient neighborhood structure for the flexible job shop schedul-
ing problem,” The International Journal of Advanced Manufacturing Technology,
vol. 52, no. 5, pp. 683–697, 2011.

20. J. Tang, G. Zhang, B. Lin, and B. Zhang, “A hybrid algorithm for flexible job-shop
scheduling problem,” Procedia Engineering, vol. 15, pp. 3678 – 3683, 2011.

21. L. Wang, S. Wang, Y. Xu, G. Zhou, and M. Liu, “A bi-population based estimation
of distribution algorithm for the flexible job-shop scheduling problem,” Computers
& Industrial Engineering, vol. 62, no. 4, pp. 917 – 926, 2012.

22. L. Wang, J. Cai, M. Li, and Z. Liu, “Flexible job shop scheduling problem using
an improved ant colony optimization,” Scientific Programming, pp. 1–11, 2017.

XXIII Congreso Argentino de Ciencias de la Computación La Plata - 9 al 13 de octubre de 2017

12

