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Abstract. Hardware virtualization tech nolog ies w ere principally designed for  
server consolidation , allow ing m ultiple Operating System s instances to b e  c o 
located  on  a single physical com puter. But, IaaS providers alw ays need  higher 
levels o f  perform ance, scalability and availability fo r  their virtualization services. 
These requirem ents cou ld  b e  m et by  a distributed virtualization tech nology , 
w h ich  extends the boundaries o f  a virtualization abstraction bey on d  a host. A s  a 
distributed system, it depends on  the com m unications betw een its com ponents 
scattered in  several n od es o f  a virtualization cluster. This w ork  contributes M 3 - 
IP C , an IPC  software layer d esigned to facilitate the d evelopm ent o f  an O S-based  
distributed virtualization.
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1 Introduction

Hardware virtualization is the most common technology that provides Virtual 
Machines (VM) as abstractions. Operating System (OS) level virtualization is another 
technology that is located at a higher level, encapsulating user-space applications within 
Containers or Jails or Virtual Operating Systems (VOS) [1]. On the other hand, in the 
1980s, several Distributed Operating Systems (DOS) [2, 3, 4, 5] were developed as a 
consequence of the limited CPU performance of a single host and the need for 
scalability and higher computing power.

Thinking of a distributed virtualization technology seems to make sense to achieve 
higher performance and increase service availability. OS-based virtualization and DOS 
technologies lead authors to think about their convergence to achieve these goals, 
extending the boundaries of the virtualized abstraction to multiple hosts and thereby 
running multiple isolated instances of DOSs sharing the same cluster.

A distributed OS-based virtualization approach will explore aggregation with 
partitioning. In such systems, a set of server processes constitutes a distributed OS 
running within an execution context which authors call “D is tr ib u te d  C o n ta in e r"  (DC). 
Processes belonging to a DC may be scattered on several nodes of a cluster 
(aggregation); and processes of different DCs could share the same host (partitioning).



The development of such distributed systems would be facilitated with an IPC 
infrastructure that provides uniform semantics without considering process location. 
But, as it is also a virtualization system, this IPC infrastructure should support 
confinement to isolate communications among processes of different DCs. In addition 
to these features, other characteristics are required which are related to generic 
distributed systems. They refer to keeping IPC operational even during process 
migration and supporting fault-tolerant applications which use the P r im a r y -B a c k u p  
approach [6]. Therefore, there is also a need to redirect communications addressed to 
the failed P r im a r y  towards one of its B a c k u p  processes that becomes the new primary. 
All these features should be complemented by a suitable performance to make 
Distributed Virtualization a feasible approach.

This paper proposes M3-IPC, a general purpose IPC software layer which is the 
foundation of a " D is tr ib u te d  V ir tu a liza tio n  S y s te m "  (DVS) [7], a new model of OS- 
level virtualization for Cloud Computing (IaaS). Distributed Virtualization must not be 
confused with Clustered Virtualization [8, 9] in which an application could run in a 
distributed way across a group of Containers located on several nodes of a cluster. On 
such systems, the boundaries of each container are limited by the node where they run, 
and applications must be developed using special middleware to extend APIs, which 
avoid the direct migration of legacy applications.

M3-IPC was developed to communicate distributed components of a VOS running 
within a DC, but it can be used as a powerful infrastructure for designing generic 
distributed applications. Although the IPC mechanism could be embedded within the 
DVS, the authors considered useful to build it as an independent software module. 
Before M3-IPC design, several IPC mechanisms were evaluated, but none of them meet 
the aforementioned requirements.

The next sections present some works related to IPC mechanisms, followed by a 
sketch of DVS components, M3-IPC concepts, design goals and implementation issues. 
Then, results of performance tests are discussed in Evaluation Section. Finally, 
Conclusions and Future Works Sections summarize the main features of the resulting 
software, including future improvements.

2 Motivation and Related Works

M3-IPC focuses on providing an IPC software layer to enable N-to-N 
communications between Client and Servers without any intermediary broker. It should 
facilitate the development of complex distributed systems such as an OS-level DVS. A 
great deal of effort had been already taken in providing IPC mechanisms for distributed 
systems, some of them being integrated as a component within classical DOS [10, 11] 
and others as added software through libraries, patches, modules, etc. [12, 13, 14, 15, 
16]. Their features, semantics and performance, were previously evaluated and during 
M3-IPC design, implementation, and testing stages. For space limitation reasons, only 
a representative set of these suitable IPC software is considered here:
• Synchronous Inter-process Messaging Project for Linux (SIMPL) [12].
• Send/Receive/Reply (SSR) [13].
• Distributed IPC (DIPC) [14].



• Remote Procedure Call (RPC) [15].
• Telecommunications IPC (TIPC) [16].

All of the above presented IPC mechanisms were used for performance comparison 
against M3-IPC as it is shown in Evaluation Section. URPC [17] was not considered 
because, although it may reach a good performance, it is weak on issues related to 
security. Messages Queues, Pipes, FIFOs, and Unix Sockets do not have the ability to 
communicate with remote processes. DIPC presents interesting features, but it is no 
longer maintained.

One of the most important features needed to build a DVS is IPC isolation, which 
includes the following properties:
1. C o n fin e m e n t: A process running within a DC cannot communicate with any process 

within another DC.
2. P r iv a te  A d d re s s in g :  An endpoint number (an M3-IPC address which identifies a 

process or thread) allocated to a process running within a DC could be allocated to 
other processes running within other DCs.

3. V ir tu a liza tio n  T ra n sp a re n c y : A process does not need to know that it is a member 
of a DC or the node in which is running, or in which nodes other processes of the 
same DC are running. To allow DVS management, privileged processes could 
allocate endpoints and DCs for other non-related processes.
None of the evaluated IPC software meet all of these requirements considering that 

a DC could span several nodes of a cluster.

3 M3-IPC Design

This section describes the design outline and rationale for M3-IPC to provide local 
and remote IPC for centralized and distributed systems. It presents the DVS topology 
model for which it was originally designed, its design goals, main concepts and 
implementation issues.

3.1 DVS Components

A DVS consists of the following components (Fig. 1):
• D V S : It is the top level layer that assembles all cluster nodes and it embraces all DCs.
• N o d e : It is a computer that belongs to the DVS where processes of several DCs are 

able to be run. All nodes are connected by a network infrastructure.
• D C : It is the group or set of related processes that might be scattered on several 

nodes. M3-IPC only allows communications among processes that belong to the 
same DC. The boundary of each DC can be based on administrative boundaries. A 
DC hides its internals from the outside world and hides network communication 
issues from its processes.

• E n d p o in t:  An endpoint is an integer number which identifies a process/thread 
registered in a DC. Endpoints are unique and global within a DC, but could be 
repeated within other DCs.



M3-IPC does not impose a network/transport protocol to be used for inter-node 
communications. It allows programmers to choose the protocol that best fit their needs. 
Nodes communicate among them through p r o x ie s .
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Fig. 1. D V S  top o log y  m odel.

3.2 M3-IPC Design Goals

The following design goals were established:
• E a sy - to -u se :  Defining, implementing, and deploying applications using M3-IPC 

should be straightforward.
• L o c a tio n  T r a n s p a r e n c y : The application should not need to consider the location of 

the involved processes in order to facilitate programming.
• C o n fin e m e n t: IPC must be confined so as to achieve a proper degree of isolation.
• C o n c u rre n cy : It should support threads to maximize throughput and efficiency.
• T ra n sp a re n t L iv e  M ig r a tio n  S u p p o r t:  The application would use process migration

[18] as a mechanism to achieve workload balancing and downtime avoidance.
• T ra n sp a re n t F a u l t  T o le ra n c e  S u p p o r t: IPC must remain operational even during 

process switching from Primary to Backup [6] without the awareness of the other 
peer processes.

• P e r fo rm a n c e  a n d  S c a la b ility :  Performance goals are considered satisfied when 
meeting minimal thresholds established for local and remote transfers. IPC 
throughput between processes located on different nodes must be limited by the 
network capability (latency and bandwidth) and the transport protocol being used.

• C o m m u n ic a tio n  P r o to c o l  A g n o s tic :  Developers can choose the Network/Transport 
Protocol to be used by proxies that best satisfies their needs.



• M o d u la r  a n d  C u s to m iza b le : It should be able to be used by any kind of application 
with similar requirements.

• C lie n t/S e rv e r  a n d  R P C  O rie n ted :  M3-IPC must cover typical communication 
patterns between multiple clients against multiple servers.

• S ec u r ity : Basic security principles must be applied to its design and implementation. 
M3-IPC is based on the assumption of a cluster of network nodes that are connected

to a switched LAN where the packet loss rate is low and the available bandwidth is high.

3.3 M3-IPC Main Concepts

M3-IPC was designed to emulate the semantics of a multi-server OS within the 
Linux kernel providing user-space APIs. Furthermore, it expands its use to processes 
located on remote nodes of a cluster, and includes features that could be required by 
distributed applications such as application isolation, location transparency, and message 
redirection on process migration or process switching on replication.

As M3-IPC supports threads to maximize concurrency, the following references to 
processes are also valid for threads.

M3-IPC APIs are classified as:
• C o m m u n ic a tio n  A P Is :  Those APIs emulate Minix 3 [19] IPC primitives. They are 

related to message and data transfers among processes. They do not include any 
reference to the DC a process belongs to, or to the node where it resides.

• M a n a g e m e n t  A P Is :  Those related to DVS, DCs, proxies, nodes, and process 
management, which allow the mapping of applications to nodes and DCs.
A process which will use M3-IPC must be previously registered at the kernel to bind 

a DC to it. The process can register by itself, or by another local process with 
management privileges. Every process bound to a DC will have a unique e n d p o in t  
number with backup endpoints as exceptions.

Management APIs consider: L o c a l e n d p o in ts  are those allocated to processes 
running on the same node; and R e m o te  e n d p o in ts  are those allocated to processes 
running on other nodes.

Every remote server should be first registered in the client’s node specifying in which 
node is running. Once a remote endpoint is registered by the kernel, all local registered 
processes (including other clients) within the same DC are able to refer to that server 
endpoint in communication APIs. Remote client binding is easier because M3-IPC can 
automatically bind remote unprivileged endpoints when their messages arrive to the 
local node.

M3-IPC supports message redirection on node switching when a Primary process 
(on node A) is replaced by a Backup process (on node B). The local M3-IPC kernel 
automatically unlinks the endpoint from the previous P r im a ry  process (on node A) and 
links it to the new P r im a r y  process (on node B). A local process can be registered as a 
B a c k u p  of a remote P r im a ry  process with the same endpoint in the same DC, but 
messages sent by other local processes addressed to that endpoint will be sent to the 
P r im a r y  process. The B a c k u p  process will not be able to communicate with any other 
process until it is promoted as the new P r im a r y  by a privileged process. Message 
replication among P r im a r y  and B a c k u p  processes does not concern M3-IPC.

M3 -IPC can keep communications in operational state and can automatically redirect 
messages on live process migration. Before a process begins to migrate, a management 
application must call m n x _ m ig r_ s ta r t( ) . At that moment, all messages addressed to the



migrating endpoint will be queued up. Once the process has successfully migrated, the 
management application must call m n x _ m ig r_ c o m m it() . All queued messages will be 
sent to the process on its new location. If the migration fails, the management application 
must call m n x _ m ig r_ ro llb a c k ();  then the process can resume its execution as if nothing 
had happened by receiving the queued messages.

3.4 M3-IPC Implementation Issues

This section describes the implementation details of the M3-IPC core within the 
Linux kernel.

M3-IPC APIs use a software interrupt vector or interrupt gate that differs from that 
used by Linux system calls. This issue allows both APIs to share the same kernel with 
minimal interference or crosstalk. It also facilitates future maintenance of M3-IPC in 
current and future Linux kernels.

Two important decisions made before developing M3-IPC were: its construction 
being based on software components that are available in the Linux kernel, and taking 
advantage of the parallelism in SMP and multi-core systems. Before starting the 
development, several Linux kernel synchronization mechanisms and mutual exclusion 
facilities were evaluated. K e r n e l  s e m a p h o r e s  and R C U  (Read-Copy-Update) were too 
slow; and s p in lo c k s  were somewhat slower than Read/Write locks (rw lo c ks) . Finally, 
m u te x e s  were used for mutual exclusion, but since they have a similar performance to 
that of rw lo ck s . A compile option is available for system programmers to choose which 
synchronization mechanisms and mutual exclusion facilities want to be used.

Another design decision was related to the mechanism for data transfer from user
space to kernel-space and vice versa. N e tl in k  so c k e ts  [20] have a quite complex start-up 
which do not meet DVS project needs. E ffic ie n t  C a p a b ili ty -B a se d  M e s s a g in g  (ECBM) 
[21] has an impressive performance, but basic security issues were neglected. Finally, 
functions c o p y _ to _ u se r ( )  and c o p y _ fro m _ u se r ()  provided by the Linux kernel were used. 
A custom function named c o p y _ u sr2 u sr () was built to copy data from the user-space 
buffer of a source process to the user-space buffer of a destination process.

The most outstanding characteristics of how M3-IPC was finally implemented are 
summarized in the following list:
• APIs support threads and were implemented using Linux kernel provided mutual 

exclusion facilities; Task Queues and Event Waiting were used for process 
synchronization; and Reference Counters were used to hold a count of processes 
from which a data structure is referenced.

• The granularity of internal critical sections was maximized at the process/thread 
level, allowing parallel message transfers among multiple pairs of processes.

• Higher performance is achieved because DCs do not share any data structure among 
one another during concurrent message transfers between pairs of processes that 
belong to different DCs.

• Data structures that are frequently used for registered processes ( s tr u c t  p r o c )  are 
aligned with L1 cache lines to reduce access time.

• An Affinity Inheritance Protocol (similar to the well-known Priority Inheritance 
Protocol) was implemented to minimize performance impact of cache ping-pong. 
Thus, the facility provided on Linux to specify process affinity with a set of 
processors/cores was used. With this approach, there is a greater chance for the



message to remain in L1 cache when the destination process is scheduled, thus 
reducing access time.

• A CPU mask could be allocated by each DC to specify on which CPUs its local 
processes are able to run (only meaningful within the each node).

• The copy of data blocks and message transfers among co-located processes are made 
from the source process address space to the destination process address space 
without any intermediate copy through the kernel. The copy is made by the Linux 
kernel through the copy-on-write mechanism.

• Debugging information is sent to the Linux kernel ring buffer and can be shown by 
means of d m e sg  command.

• Data blocks which are page-aligned and whose lengths are greater than or equal to 
the page size are copied using the kernel provided p a g e _ c o p y ( )  function, which is 
very efficient because it uses MMX instructions.

• Information about configuration, status, and statistics of M3-IPC abstractions is 
presented as directories and files within Linux /p ro c  filesystem.
M3-IPC has been implemented in C programming language on Linux for Intel x86 

32-bit and it is distributed as a kernel patch, a kernel module, and a set of libraries.

Proxies and IPC through the Network
M3-IPC uses application level proxies for communications between nodes, but also 

support kernel-level proxies too. Therefore, there is no restriction about the 
network/transport protocol proxies can use.

M3-IPC APIs provides a function to get messages from the kernel that need to be 
sent to remote nodes, and another function to insert messages into the local kernel 
coming from remote nodes to local processes as destinations.

The current M3-IPC distribution provides the use of one pair of proxies (sender
receiver) for each remote node. Proxies exchange p r o x y  m e ss a g e s  which consist of fixed 
length headers and, eventually, variable length payloads (data blocks).

The provided proxies send/receive messages and data through the network without 
taking account to which DC those messages or data belong to. Custom proxies may 
consider implementing encryption, compression, filtering, message logging, QoS, etc.

4 Evaluation

This section is devoted to M3-IPC performance evaluation against other IPC 
mechanisms. The compliance of the other design goals was verified during and after the 
development stage using several testing scenarios.

Two types of communication tests are presented in Fig. 2: 1) between co-located 
processes; 2) between processes located on different nodes. Furthermore, two types of 
micro-benchmarks were performed on each one: a) message transfer; b) data copy. The 
following common communication pattern was used: a server waits to receive a message 
from a client, and immediately replies. Once the client sends the request to the server, it 
waits for the reply. The reply may be a message (36 bytes) or a block of data (36 bytes 
to 64 Kbytes).

Although several performance metrics were evaluated as latency, CPU usage, 
network usage, by space limitations, only the throughput results are presented here.



The tests were made on a cluster of 8 (eight) quad-core Intel(R) i5 CPU 
650@3.20GHz with a memory bandwidth of 20,841 Gbytes/s for 64 Kbytes blocks 
(reported by b m m e m ) ,  linked by a 1 Gbps dedicated LAN switch.

TCP) Block Size |Bytes|
(C) Remote message transfer throughput (D) Remote data transfer throughput

Fig. 2 : Results o f  perform ance tests.

4.1 Tests between Co-located Processes

Tests between co-located processes allow the comparison of M3-IPC performance 
versus other IPC mechanisms available on Linux.

One of the design goals states that the expected performance should be as good as 
the fastest IPC mechanisms available on Linux. The following IPC mechanisms were 
tested using custom and [22, 23] provided micro-benchmarks: M e s s a g e  Q u eu es, R P C ,  
T IP C , F IF O s, p ip e s , U n ix  S o cke ts , T C P  S o c k e ts , S R R , S IM P L .

4.1.1 Message Transfer Performance
The presented results (Fig. 2-A) summarize the best throughput achieved by the IPC 

mechanisms running a single pair of client/server processes. Linux IPC mechanisms 
with the highest performance were pipes and named pipes (or FIFOs) followed by M3- 
IPC (925,314 [msg/s]).

Another micro-benchmark of message transfers between multiple pairs of 
Client/Server processes was run to evaluate performance in concurrency. The highest 
average throughput was 1,753,206 [msg/s], which was reached with 4 pairs of 
Client/Server processes (4 cores).



4.1.2 Data Copy Performance
As it is shown in Fig. 2-B, M3 -IPC performance surpasses other IPC mechanisms on 

Linux. The reasons of this behavior are: 1) M3-IPC performs a single copy of data 
between address spaces while the others perform at least two copies (Source to Kernel, 
Kernel to Destination); 2) it requires a lower number of context switches; 3) it uses the 
Linux kernel provided p a g e _ c o p y ( )  function which uses MMX instructions.

4.2 Tests between Processes Located on Different Nodes.

This section presents performance results of M3-IPC against RPC and TIPC.
M3-IPC does not consider flow control, error control, or congestion control. Those 

issues are delegated to proxies and the protocol that the use. Reference implementations 
of M3-IPC proxies use TCP and TIPC as transport protocols.

4.2.1 Message Transfer Performance
As it can be seen in Fig. 2-C, TIPC has the highest throughput. M3-IPC using TCP 

on proxies has throughput similar to RPC.
The remarkable performance of TIPC suggested that it could be a good option to be 

used by M3-IPC proxies as transport protocol. M3-IPC versatility and flexibility in 
proxy programming allowed authors to modify the source code of proxies in a few 
minutes so as to use TIPC instead of TCP. These changes result in an improvement of 
performance, emphasizing the impact that the transport protocol has on its throughput.

4.2.2 Data Copy Performance
As shown in Fig. 2-D, TIPC presents the highest throughput of 81[MB/s] that 

confirms results presented in [16]. The highest throughput achieved by RPC and M3- 
IPC was about 60[MB/s]. Fig.2-D also shows that there is no noticeable difference in 
performance when using TIPC instead of TCP as transport protocol on M3-IPC proxies 
to copy data blocks.

5 Conclusions and Future Works

IaaS providers always need higher levels of performance, scalability and availability 
for their virtualization services. These requirements can be met by a distributed 
virtualization technology. As a proof of concept, a DVS prototype using M3-IPC was 
developed.

M3-IPC addresses some issues about thread support, location transparency, message 
redirection on process migration, network-transport protocol agnostic, and IPC 
confinement for virtualization. The results show that M3-IPC achieves all its 
performance related design goals, with a high throughput for both intra-node and inter
node messages and data transfers.

To improve M3-IPC security and isolation issues, its integration to Linux 
Capabilities and c g r o u p s  [24] are being considered for further research and future works.

Until the development of M3-IPC, to the best of authors’ knowledge, there was not 
a modular IPC software for Linux that fully satisfied the particular communication needs



of a DVS. This suggests that many questions remain about software for programming 
communications related to virtualization.
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