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Abstract—Survivability of optical networks is considered
among the most critical problems that telecommunications op-
erators need to solve at a reasonable cost. Survivability can be
enhanced by increasing the amount of network links and its
spare capacity, nevertheless this deploys more resources on the
network that will be used only under failure scenarios. In other
words, these spare resources do not generate any direct profit to
network operators as they are reserved to route only disrupted
traffic. In particular, the case of dual link failures on fiber optic
cables (i.e., fiber cuts) has recently received much attention as
repairing these cables typically requires much time, which then
increases the probability of a second failure on another link of
the network. In this context, survivability schemes can be used
to recover the network from a dual link failure scenario. In this
work, we analyze the case of protection and restoration schemes,
which are two well-known recovery strategies. The former is
simpler to implement as it considers a fixed set of backup paths
for all failure scenarios; however, it cannot take into account
the spare capacity released by disrupted connections. Instead,
the latter computes the best recovery path considering not only
the spare capacity but also the released one due to failures.
Achieving 100% survivability (i.e., recovery from all possible
dual link failures) requires a triconnected network, where three
disjoint paths for each connection are required. Since these
networks can become extremely expensive since they can require
a huge number of network links (i.e., fibers connections), a more
realistic case of non-triconnected networks is assumed. In these
networks, full network recovery is not be feasible, but achieving
the maximum possible survivability is desired. Spare capacity can
then be allocated to existing network links, which represents the
actual cost of the survivability. We propose optimization models
that take into account these different recovery strategies, and
demonstrate that restoration has the potential to provide a much
better recovery capability with almost the same amount of spare
capacity required in protection schemes.

I. INTRODUCTION

Survivability is one of the most important aspects of optical

transport networks as it enables to withstand and recover

from failures which otherwise can disrupt telecommunications

services. However, survivability can only be obtained by allo-

cating spare capacity on network links. This spare capacity is

used to reroute interrupted services due to failures. Since spare

capacity has a direct impact on the actual cost of the network,

operators make use of optimization models to design their

networks in order to minimize this capacity while maximizing

network survivability.
Research in optical transport networks survivability has tra-

ditionally been focused on single-link failures [1], in particular

on the case of optical link failures (i.e. fiber cuts). Nevertheless

typical repair times for fiber cuts are large, then the probability

of a dual fiber cut scenario in large transport networks may

become relevant. In the past several works have also consid-

ered dual link failures [2], [3], [4]. Empirical observations

can be found in [5]. Authors in [6] studied the impact of

dual failures in networks planned to protect single failures.

In [7] the dual failure restorability of networks designed for

single failure survivability problem is addressed using shared

backup paths. Dual-link failures restorability using p-cycle is

studied in [8],[9]. An Hybrid Protection/Restoration approach

is studied in [10] for WDM networks reducing the spare

capacity compared with a full protection scheme. In [4],[11]

the authors studied the spare capacity allocation problem

using shared backup paths on triconnected networks and using

partially-disjoint backup paths on non-triconnected networks.

Survivability of 100% possible dual-link failure scenarios

can result in huge costs as it requires triconnected optical

networks [4], where each service can be established through

either one of three completely disjoint paths. The improvement

of survivability by means of triconnected networks involves

increasing the number of network links. These links require

the deployment of fiber optic cables which can be extremely

expensive. Commercial optical transport networks are not

typically triconnected because of this reason. Instead, network

operators prefer to increase the spare capacity on already

deployed fibers as it is much cheaper. Indeed, network capacity

is typically enlarged today by upgrading terminal equipment

on the existing fiber link. In this paper, we investigate, model

and analyze the optimization problem of minimizing spare

capacity in non-triconnected optical networks. We address this

problem from the point of view of two different survivability

strategies: protection and restoration.

Protection schemes refer to the fact that recovery from

link failures is based on preset backup paths. Upon failure

detection, a terminal equipment can use these backup paths

to re-establish the lost connection. Some spare capacity is

thus reserved for these paths. Authors in [4] have studied

the problem of finding two backup paths per connection that

minimize the total spare capacity. In this scenario, a set of

three link-disjoint paths per connection must exist, namely a

working path, a primary backup path and a secondary backup

path. If so, all connections can survive to any dual link failure

scenario as it is guaranteed that at least one out of the three

paths will always be available. However, in non-triconnected

networks, three disjoint paths per connection may not exist,978-1-5386-3057-0/17/$31.00 c© 2017 IEEE



then partially disjoint paths can be found for the primary

and secondary backup paths [11]. These connections will

not survive to the dual-link failure scenarios that affect the

working path as well as the shared link on the backup paths.

Even if 100% recovery is not possible in these scenarios, the

main goal still is to allocate the minimum amount of spare

capacity that provides the maximum recovery capability.

Even if protection schemes are widely used due to their sim-

plicity, they tend to reserve a lot of spare capacity to guarantee

survivability on all possible failure scenarios. Besides, the

working capacity, which is allocated for the original working

path, cannot be used to re-establish connections. Restoration

schemes do not define a fixed set of backup paths as protection

does, instead a restoration path is computed over each failed

scenario. This path can consider not only the available spare

capacity but also the working one that has been released

by the lost connections. As a result, restoration can require

allocating less spare capacity than protection schemes. Since

working capacity is released, restoration can also provide a

better recovery capability with respect to protection schemes.

Historically the main disadvantage of restoration schemes

has been that they expend lot of time in the path discovery

process since this process is done in a distributed fashion. But

in the last years the concept of software defined optical net-

works (SDON) was introduced [12]. Software defined optical

networks is still an open research field and its implementa-

tions are still under discussion. Nevertheless is expected that

software defined networks will allow applications to control

network resources or information across different technology

domains. This will enable fast restoration and centralized

restoration. In [13] authors propose a fast restoration scheme

based on SDON. In this work we investigate how a centralized

restoration scheme can help in dual-link failures survivability.

In this paper, we evaluate protection and restoration strate-

gies under single/dual link failure scenarios. Including cen-

tralized and distributed restoration schemes. In Section II we

discuss their behavior in non-triconnected networks. In Section

III the well-known Spare Capacity Allocation (SCA) problem

[14],[4] is defined for these schemes. Optimal solutions to the

problem are obtained by means of Integer Linear Programming

(ILP) models described in Section IV . Finally in Section V

we show results for three different non-triconnected networks.

This results show that restoration schemes can provide a much

better recovery capability with almost the same spare capacity.

II. SURVIVABILITY SCHEMES

The optical networking community uses the term survivabil-

ity to mean link node-level fault tolerance [15]. Fault tolerance

relies on redundancy to compensate random uncorrelated

failure of components. Protection schemes make use of pre-

planed and reserved resources to re-route traffic in presence of

link failures. While restoration schemes make use of the spare

capacity to re-route services after the failure has occurred.

A. Protection

If only single-link failures are being taken into account,

traditional schemes with single backup path, such as dedicated

protection (1+1) and shared protection (1:1), can be used. This

schemes need fully bi-connected networks to provide 100%

single-link failures tolerance. Nevertheless this schemes can’t

provide tolerance to all possible dual-link failures. If protection

against dual-link failures is required, two backup paths are

mandatory. This protection schemes can only provide 100%

dual-link failures tolerance in triconnected networks. In non-

triconnected networks, three disjoint paths may not exist, so

partially disjoint paths must be used for dual-link failures

protection schemes.

1) 1+1 Protection: A primary backup path is allocated

for each service. The working path and the backup path

must be link-disjoint. This protection scheme can be used in

biconnected networks in order to provide single-link failure

survivability.

2) 1:1 Protection: A primary backup path is reserved for

each service, if the working paths of two different flows are

disjoint then the capacity of the protection paths can be shared.

This scheme can be used in biconnected networks in order to

provide single-link failure survivability.

3) 1+1+1 Protection: In this scheme, a primary and a

secondary backup paths are reserved for each service, where

dedicated capacity is allocated for each path. These backup

paths and the working path must be mutually link-disjoint

to provide 100% dual-link failures survivability. In non-

triconnected networks, this scheme can be used by means of

partially disjoint backup paths, but 100% survivability is not

guaranteed.

4) 1+1:1 Protection: This scheme also requires reserving a

primary and a secondary backup path for each service. If these

paths can be mutually link-disjoint (triconnected network),

then 100% dual-link failures survivability is guaranteed. In-

stead of allocating dedicated capacity for all backup paths as

in 1+1+1, spare capacity can be shared for secondary backup

paths. This is feasible whenever two services have mutually

link-disjoint working and primary paths.

5) 1:1:1 Protection: Further spare capacity reduction can

be potentially achieved by sharing capacity among all primary

and secondary backup paths.These capacities can be shared

between two primary or secondary backup paths if they are

never used simultaneously. Still a primary and a secondary

backup paths are reserved for each service, these two paths and

the working path must be mutually link-disjoint; otherwise,

100% dual-link failures survivability is not possible.

B. Restoration

Restoration schemes deal with link failures in a reactive

way by searching for a restoration path once the failure

has occurred. Nowadays restoration is done in a distributed

fashion. This means that the path discovery and configuration

can take several time to be completed. Also, it can happen

that there is no enough capacity left for the restoration. An

alternative that can deal with these limitations is a centralized



Fig. 1. Shared protection vs. restoration

restoration scheme. This kind of centralized restoration scheme

can become possible in the near future as software defined

optical networks are evolving quickly. Spare capacity can

be allocated in order to guarantee that enough capacity is

available for restoration in every single/dual link failure sce-

nario. In triconnected networks all possible dual-link failures

can be restored, while in non-triconnected networks only

some scenarios can be restored. Restoration schemes allow

full capacity sharing, meaning that two paths can share their

capacity if there is no scenario in which their are both active.

Whenever a working path is interrupted, its capacity can be

released. In protection schemes this capacity is never shared

because working paths and backup paths must be disjoint. In

restoration schemes this capacity can be fully shared since a

restoration path is always independent of any other path.

In Fig. 1 we show an example of a triconnected network

with two connection flows (services), Flow 0 and Flow 1,

each one demanding one unit of traffic. We define paths as

a sequence of node indexes ni given by < n1, n2, ..., np >,

where n0 is the index of the source node of the flow, np is

the index of destination node of the flow, and ni, 1 > i > p
are the indexes of intermediate nodes. Flow 0 has a working

path given by < 0, 1, 4 > (continuous black line) and Flow

1 has a working path given by < 1, 4, 3 > (continuous gray

line). For 1:1:1 protection scheme (left case), a primary and a

secondary backup paths are defined for each flow. Flow 0 has

< 0, 2, 4 > as primary backup and < 0, 3, 4 > as secondary

backup path, while Flow 1 has < 1, 2, 3 > and < 1, 0, 3 >
as primary and secondary backup paths, respectively. For the

restoration scenario (right case), no backup paths are defined

but spare capacity is allocated for restoration paths. Allocated

capacity is shown on each link as w + s, where w refers to

working capacity, and s, to spare capacity. In 1:1:1 protection,

only backup paths can share spare capacity but in restoration

the working and the spare capacity is shared enabling further

capacity saving.

Fig. 2 shows how the working capacity can be shared in

a restoration scheme. When links (2, 4) and (1, 4) fail, both

Fig. 2. Working capacity sharing in restorations schemes

flows (services) must be restored. The working capacity in link

(3, 4) is released and can be used by the restoration paths. The

same happens when link (1, 2) and (1, 4) fail, the working

capacity in link (0, 1) is used by the restoration path of Flow

1.

Survivability of all dual-link failure scenarios is not possible

on non-triconnected networks. We define a recovery index R
that compares the number of dual-link failure scenarios that

the network can survive with respect to the total dual failure

scenarios. For a network with M links the total single/dual

link failure scenarios are
(
M
2

)
+M , then

R =
survivable scenarios(

M
2

)
+M

× 100

In non-triconnected networks, restoration schemes can

achieve better performance than protection schemes in terms

of the recovery index R.

In Fig. 3 we show the case of a biconnected network with

only one flow (service). For 1:1:1 protection, seven spare

capacity units are needed and the 96,66% of the single/dual

link failure scenarios are covered. If a shared restoration

scheme is being used, then eight spare capacity slots are

needed but the 99,16% of the single/dual link failure scenarios

are covered. It is worth noticing that even if we add more spare

capacity on the links for the 1:1:1 protection, the recovery

capability R can’t be increased. Instead, a restoration strategy

enables allocating more spare capacity (i.e., one unit more) in

order to increase the recovery index.

1) Centralized versus Distributed Restoration: Restoration

schemes select a route for each disrupted flow after the disrup-



Fig. 3. Survivability in biconnected network

tion has occurred. This re-routing can be made by a centralized

manager or in a distributed fashion. In the centralized scheme,

the decision is made taking into account all the possible

scenarios. In a distributed scheme, an equipment may make

a decision upon a disruptive event that affects the availability

of spare capacity to route other flows (services). Blocking can

happen and depends on which equipment routes first. In Figure

4 a five node graph is shown, with two flows (services), one

from node 0 to node 3 with its working path < 0, 2, 3 > and

the second flow from node 4 to node 0 with working path

< 4, 1, 0 >. If at any time links (0, 2) and (1, 4) fail, the

two flows must be restored. In a distributed scheme, it can

happen that flow from 0 to 3 restores first through the shortest

path from 0 to 3. However, if flow from 4 to 0 restores first

there are two different shortest paths. Then, if node 4 chooses

< 4, 2, 1, 0 > there is no blocking but if node 4 chooses path

< 4, 2, 3, 0 > for the restoration then the flow from node 0

to node 3 will be blocked. Note that node 4 has no way to

know if the path selected is globally optimal. In a centralized

scheme, the central routing manager can choose both routes

in an optimal way in order to avoid blocking.

Fig. 4. Blocking on distributed restoration scheme

III. SCA PROBLEM STATEMENT

The Spare Capacity Allocation (SCA) problem consists

of finding the minimum spare capacity needed to guarantee

network survivability. As discussed before, 100% survivability

to dual-link failures can only be achieved in triconnected net-

works. For the case of non-triconnected networks the problem

can be described as finding the minimum spare capacity that

maximize the single/dual link failures survivability. Since we

will consider networks that are not triconnected, we will use

the the recovery index R as a to compare the performance of

the different schemes.

An optical network can be represented as an undirected

graph G = {V,E} of N nodes, M links and K flows

(services). Each flow k, 1 ≤ k ≤ K has its source/destination

node sk, dk and a capacity demand Ck. Each flow k has a

working path given by P k
ij , where P k

ij = 1 if the working

path of flow k uses link (i, j) ∈ E, and Pij = 0 otherwise.

As each single/dual-link failure leads to a new topology, each

scenario can be modeled as a new graph based on G where

the failed links are removed from E. This results in a multi-

graph structure G = {Gg} = {Vg, Eg} where each subgraph

Gg has a node set Vg = V , and link set Eg . This is illustrated

in Fig. 5.

In a given subgraph Gg , the working path of each flow k
may be interrupted. This is represented by the P k

g coefficients,

where P k
g = 1 if the flow k can be routed over its working path

in subgraph Gg and P k
g = 0 otherwise. Moreover, a flow must

use the working path whenever it is available, so a P k
g = 1



Fig. 5. Multi-graph representation

also indicates that the working path of flow k must be used

in subgraph Gg .

Since this model must take into account non-tricconected

networks, it is possible that in a particular subgraph Gg no

path for a flow k is available. In that case, there is no way to

route the flow in that subgraph and no capacity allocation is

required. We consider Kg as the set of all flows k that have

path availability in subgraph Gg . If k is not present in Kg,

then that flow does not require capacity on subgraph Gg .

The total capacity allocated on link (i, j) for subgraph Gg

is referred as cgij , and it depends on all flows routed through

(i, j) for subgraph Gg and their capacity demands Ck. The

resulting capacity allocated on link (i, j) for the graph G
is referred as cij , this capacity has to take into account the

link capacities required by all subgraphs. Note that two paths

routed on the same subgraph cannot share capacity, but two

paths routed on different subgraphs can fully share capacity,

then cij ≥ cgij . In this context, the working capacity allocated

on link (i, j) is wij =
∑K

k=1 C
kP k

ij , while the spare capacity

allocated in link (i, j) is sij = cij − wij .

The total spare capacity s allocated on the network is

the sum of all the spare capacities allocated on each link,

s =
∑(i,j)∈E

sij . The main goal of the SCA problem is then

to minimize the total spare capacity s while maximizing the

number of survived scenarios.

In restoration scheme the spare capacity allocated must

guarantee that for each Gg the flows in Kg are satisfied. In

protection schemes the spare capacity allocated is for backup

paths, and the sharing can only be achieved if two paths are

never used in the same subgraph Gg simultaneously. Further

constraints are introduced in next section for protection backup

paths, nevertheless all the formulation provided in this section

is used for protection schemes too.

IV. SURVIVABILITY SCA MODELS

In this section we describe the different survivability models

for the SCA problem. We consider the case of restoration

mainly, and compare with the cases of shared protection

(1:1:1) and dedicated protection (1+1+1). These models re-

quire some preprocessing tasks that enable to better formulate

these models as Integer Linear Programing formulations (ILP).

A. Preprocessing

Given the network topology represented as the graph G =
(V,E) with N nodes, M links and a working path wpk and

a capacity demand Ck for each flow k with 1 ≤ k ≤ K, we

first generate all the required coefficients by the model. The

working path represented by wpk =< n1, n2, ..., np > must

be mapped to the coefficients P k
ij . If the sequence ni, nj exists

in the path wpk then P k
ij = 1 and P k

ij = 0 otherwise. From

each working path wpk =< n1, n2, ..., np > source node sk

and destination node dk must be mapped, sk = n1, dk = np.

As described earlier, G is the set of all single/dual link

failure scenarios of G, G = {Gg} where each Gg = (Vg, Eg)
is a graph with the same node set Vg = V and with a link

set Eg that is a copy of E but with one/two links subtracted

from it. The number of subgraphs Gg is
(
M
2

)
+M . Once the

G set is computed the P k
g coefficients can be generated. For

each subgraph Gg the working paths of the K flows must

be evaluated, if working path wpk is available on subgraph

Gg then P k
g = 1, and P k

g = 0 otherwise, with 1 ≤ k ≤ K.

Finally, for each flow k path availability must be tested for

each subgraph Gg . This is, if at least one path from sk to dk

exists in subgraph Gg , then k ∈ Kg and if no path can be

found then k �∈ Kg .

B. Distributed Restoration Model

Distributed restoration spare capacity problem can’t take

advantage of the multi-graph optimization. The reason for this

is that no global metric is used in the path discovery process.

The route discovery is triggered in each source node once the

failure has occurred and is solved using some kind of shortest

path algorithm. In order to model the SCA problem for the

distributed restoration scheme we developed an computational

method. This method computes the minimum spare capacity

that guarantee enough capacity for restoration in each scenario.

For each subgraph Gg a shortest path algorithm is called for

each interrupted flow (service) k. Spare capacity is allocated

for each path. Capacity can be shared between paths used in



different subgraphs, but capacity can never be shared between

paths that are used simultaneously in a specific subgraph.

C. Centralized Restoration ILP Model

First, we introduce the ILP model for the restoration

scheme. The objective is given by Eq. 1 of the model,

which aims at minimizing the total spare capacity s along

all the network. This value take into account all the spare

capacity allocated on each link to guarantee the best achievable

recovery performance R. Constraints can be split into: 1) flow

constraints Eq.2, Eq.3, Eq.4, Eq.5, and 2) capacity constraints

Eq.6, Eq.7, Eq.8, Eq.9.

1) Flow constraints: The flow variables xk
gij represent the

route of flow k in subgraph Gg , where xk
gij = 1 implies that

the flow k goes through link (i, j) in subgraph Gg . Constraint

Eq. 2 ensures that the flow continuity for each flow k ∈ Kg

from sk to dk in subgraph Gg . This continuity constraint is

only present if k is in Kg, so the flow must be routed only if

at least one path exists from sk to dk. Constraint Eq. 3 avoids

loops in the flows, that means a link can never be used twice

for one flow.

The working paths must be used whenever they are avail-

able. Constraint Eq. 4 forces flow variables to xk
gij = 1 if the

working path of flow k is available in Gg and link (i, j) is part

of that path. P k
g = 1 is one only when working path of flow k

is available on subgraph Gg and P k
ij is one if link (i, j) is part

of the working path of flow k. If a link (i, j) is not present

(i.e., fiber cut) in subgraph Gg , it means that (i, j) �∈ Eg and

no flow can be routed through it. Constraint Eq. 5 force flow

variables that cant be used to zero.

2) Capacity constraints: The total capacity needed on link

(i, j) in subgraph Gg is given by cgij , which accounts for both

the working and spare capacity. This variable is undirected, so

all the capacities allocated in both directions (i, j), (j, i) of all

flows must be added. Constraint Eq. 6 computes total capacity

allocated per link on each subgraph Gg .

Since the restoration scheme allows capacity sharing be-

tween paths that are in different subgraphs, then the total

capacity allocation per link is the largest allocation along

all the subgraphs, Eq. 7. This total capacity per link cij
includes working capacity and spare capacity, constraint Eq. 8

represents this relation.

Finally, the total spare capacity is the sum of all the spare

capacities allocated per link, Eq.9.

TABLE I
INPUT DATA

N,M,K, |G| Number of nodes,links, flows, graphs

G = {Gg} = {(Vg , Eg)} Double failure graphs set

Ck Capacity demands

sk, dk source/destination nodes of flow k

Pk
ij Working paths link coefficients

Pk
g Working paths availability coefficients

Kg Path availability for each flow k in graph g

TABLE II
VARIABLES

xk
gij Binary, is set iff edge (i, j) is used by flow k in subgraph Gg

cgij Integer, allocated capacity in edge (i, j) in subgraph Gg

cij Integer, total allocated capacity in edge (i, j)

sij Integer, total allocated spare capacity in edge (i, j)

s Integer, total allocated spare capacity

Minimize:
s (1)

Subject to:

M∑
j=1

xk
gij −

M∑
j=1

xk
gji =

⎧⎨
⎩

1 if i = sk

−1 if i = dk

0 other

∀g, i, k ∈ Kg

(2)

xk
gij + xk

gji ≤ 1 ∀g, k, i, j (3)

xk
gij ≥ P k

ijP
k
g ∀g, i, j, k (4)

xk
gij = 0 ∀(i, j)|(i, j) �∈ Eg (5)

cgij =
K∑

k=1

Ck(xk
gij + xk

gji) ∀g, i, j (6)

cij ≥ cgij ∀g, i, j (7)

sij = cij −
K∑

k=1

CkP k
ij ∀i, j (8)

s =

(i,j)∈E∑
sij (9)

D. Protection 1:1:1 ILP Model

TABLE III
ADDITIONAL VARIABLES

qkij Binary, is set iff edge (i, j) is used by primary backup of flow k

zkij Binary, is set iff edge (i, j) is used by secondary backup of flow k

qkg Binary, is set iff primary backup of flow k is used in graph Gg

zkg Binary, is set iff secondary backup of flow k is used in graph Gg

xk
g Binary, is set iff flow k is satisfied in graph Gg

Maximize:

α

g∑ K∑
k=1

xk
g − s (10)



Subject to:

M∑
j=1

xk
gij −

M∑
j=1

xk
gji =

⎧⎨
⎩

xk
g if i = sk

−xk
g if i = dk

0 other

∀g, i, k ∈ Kg

(11)

xk
gij + xk

gji ≤ 1 ∀g, k, i, j (12)

xk
gij ≥ P k

ijP
k
g ∀g, i, j, k (13)

xk
gij = 0 ∀(i, j)|(i, j) �∈ Eg (14)

qkg + zkg + P k
g = xk

g ∀g, k (15)

qkij + qkg − 1 ≤ xk
gij ∀g, k, i, j (16)

xk
gij + qkg − 1 ≤ qkij ∀g, k, i, j (17)

zkij + zkg − 1 ≤ xk
gij ∀g, k, i, j (18)

xk
gij + zkg − 1 ≤ zkij ∀g, k, i, j (19)

cgij =
K∑

k=1

Ck(xk
gij + xk

gji) ∀g, i, j (20)

cij ≥ cgij ∀g, i, j (21)

sij = cij −
K∑

k=1

CkP k
ij ∀i, j (22)

s =

(i,j)∈E∑
sij (23)

The objective of the original formulation is modified. With

protection schemes in non-triconnected networks there is no

way to know in the preprocessing step if a flow can or can not

be satisfied in subgraph Gg . It is necessary to include a new set

of variables, xk
g that is set if the flow k is satisfied in subgraph

Gg . Eq.10 includes in the first term, the sum of all xk
g . The

coefficient α must be bigger than the biggest value s can take.

This is because the model must satisfy the flows whenever it is

possible as the higher priority and as second priority minimize

the spare capacity used, α >
∑(i,j)∈E ∑K

k=1 C
k.

Eq.11 is modified to take into account the new variable xk
g ,

the flow k must be satisfied in subgraph Gg only if xk
g = 1.

Whenever the flow is satisfied in a subgraph Gg , it must

use the working path, the primary backup or the secondary

backup. This is represented in the model by Eq.15, where qkg
is for the primary backup and zkg is for the secondary backup

usage in subgraph Gg .

The primary backup path of flow k is unique. Eq.16 implies

that if primary backup of flow k is being used in subgraph Gg

then flow variable xk
gij is set only if qkij is set. And Eq.31

implies that if the primary backup of flow k is being used

in subgraph Gg then qkij is set only if xk
fij is set. This two

constraints ensures that the primary backup path is constructed

for each flow k.

The same thing happens with the secondary backup paths

using the zkg and zkij variables. The 1:1:1 protection scheme

allows the full sharing of the protection paths, and there is no

constraint on which protection path is used in each subgraph

Gg

E. Protection 1+1+1 ILP Model

Finally, we consider the case of dedicated protection

(1+1+1). The difference between this formulation and the

previous one is that the spare capacity cannot be shared with

only one exception. We consider the case of non-triconnected

networks, then partially disjoint paths must be used for the

backup paths. This implies that if both backup paths share one

link the spare capacity can be shared on that link. This makes

the 1+1+1 protection scheme the most restrictive scheme in

terms of capacity sharing. This will be reflected in the results,

this scheme is the most expensive one. Eq. 35 shows that if

at least one of the two backup paths of flow k uses link (i, j),
then rkij is set. Eq. 36 computes the total spare capacity per

link as the sum of the rkij variables multiplied by the capacity

demand Ck.

TABLE IV
ADDITIONAL VARIABLES

rkij Binary, is set iff link (i, j) is used by primary

and/or secondary backup of flow k

Maximize:

α

g∑ K∑
k=1

xk
g − s (24)

Subject to:

M∑
j=1

xk
gij −

M∑
j=1

xk
gji =

⎧⎨
⎩

xk
g if i = sk

−xk
g if i = dk

0 other

∀g, i, k ∈ Kg

(25)

xk
gij + xk

gji ≤ 1 ∀g, k, i, j (26)

xk
gij ≥ P k

ijP
k
g ∀g, i, j, k (27)

xk
gij = 0 ∀(i, j)|(i, j) �∈ Eg (28)

qkg + zkg + P k
g = xk

g ∀g, k (29)



qkij + qkg − 1 ≤ xk
gij ∀g, k, i, j (30)

xk
gij + qkg − 1 ≤ qkij ∀g, k, i, j (31)

zkij + zkg − 1 ≤ xk
gij ∀g, k, i, j (32)

xk
gij + zkg − 1 ≤ zkij ∀g, k, i, j (33)

cij = sij +
K∑

k=1

CkP k
ij ∀g, i, j (34)

2rkij ≥ qkij + zkij ∀i, j, k (35)

sij =
K∑

k=1

Ckrkij ∀i, j (36)

s =

(i,j)∈E∑
sij (37)

V. MAIN RESULTS

Different analysis were performed on three mesh-type non-

triconnected networks topologies shown in Fig. 7. Each net-

work has a traffic demand consisting in one flow (service)

between every two nodes requiring one unit of capacity. This

means that the total number of flows K will be given by

K =
(
N
2

)
.

The working paths are determined using a shortest path

algorithm. For each network we show results of the required

spare capacity using either a 1+1+1 protection scheme, 1:1:1

protection scheme and both restoration schemes. We compare

performance in terms of the recovery index R and in terms of

relative spare capacity allocated. The relative spare capacity

is the spare capacity normalized by the total working capacity

expressed as a percentage.

The four models formulated in the previous section where

implemented using preprocessing routines in Python that gen-

erate the different instances of the models for each network

topology. All the instances where solved using CPLEX with

computation times below 45 minutes in a personal computer

with Intel i7 processor and 8Gb of RAM.

Table V reports main results, where the first column (w)

shows the total allocated working capacity, the second column

(s), the total allocated spare capacity, the third column, the

amount of survived scenarios, and the last column, the total

number of single/dual link failure scenarios.

Fig. 6. Networks topologies

TABLE V
RESULTS

Network Scheme w s Survived Total
Scenarios Scenarios

1+1+1 21 91 33 45

Net0 1:1:1 21 23 33 45

1+R (centralized) 21 23 42 45

1+R (distributed) 21 30 42 45

1+1+1 66 346 74 120

Net1 1:1:1 66 134 74 120

1+R (centralized) 66 135 115 120

1+R (distributed) 66 180 115 120

1+1+1 99 334 174 210

Net2 1:1:1 99 125 174 210

1+R (centralized) 99 122 206 210

1+R (distributed) 99 197 206 210

The 1+1+1 protection scheme always needs more spare

capacity than the other schemes. It can be seen how the

shared backup paths scheme 1:1:1 can help to decrease the

total spare capacity allocated. Nevertheless the number of

single/dual link failure scenarios tolerated by the 1:1:1 pro-

tection scheme is always the same than the 1+1+1 protection

scheme. The restoration schemes have better performance

in terms of the recovery index in the three cases. This is

because restoration can deal with more failure scenarios than

protection schemes in non-triconnected networks. But, the

required spare capacity by restoration schemes is always at

least the spare capacity needed by the 1:1:1 protection scheme.

The centralized restoration show the same performance in

terms of recovery index than the distributed version but using



Fig. 7. Results

almost the same spare capacity than the shared protection

scheme. This results suggests that a centralized restoration

scheme is a good alternative for shared backup paths protection

since it can survive more dual-link failure scenarios using

almost the same spare capacity.

VI. CONCLUSION AND FUTURE WORK

In this work we described the spare capacity problem in op-

tical networks for different survivability strategies taking into

account single and dual link failures scenarios. Dedicated and

shared protection schemes were analyzed in addition to cen-

tralized and distributed restoration schemes. We formulated the

spare capacity problem for these strategies using integer linear

programming methods. Finally we used these formulations

in order to analyze the performance of protection schemes

and restoration schemes in three optical networks topologies.

We showed that restoration schemes can increase the number

of survived dual link failures scenarios in non-triconnected

networks. We also showed that for distributed restoration

scheme at least 30% more spare capacity is needed than

in the centralized restoration scheme for this three network

topologies. This results suggest that centralized schemes can

help in optical networks link-failure tolerance allocating less

capacity than distributed schemes. Centralized restoration is

not yet an option in commercial optical networks. Nevertheless

as software optical networks are evolving rapidly, in the near

future this kind of features may be available. As software

defined optical networks rely on centralized network planning

and managing, a centralized restoration reactive scheme could

be a cost-effective alternative to shared backup paths protec-

tion. In future works we will investigate how software defined

optical networks can make use of centralized restoration in

order to decrease development and operation costs in non-

triconnected networks.
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