XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

A Graphical Web Tool with DL-based Reasoning
Support over Orthogonal Variability Models

Angela Oyarzun' and German Braun'-3, Laura Cecchi®, and Pablo Fillottrani?*
UNIVERSIDAD NACIONAL DEL COMAHUE 2UNIVERSIDAD NACIONAL DEL SUR
3Consejo Nacional de Investigaciones Cientificas y Técnicas (CONICET)
4 Comision de Investigaciones Cientificas de la Provincia de Buenos Aires (CIC)

Abstract Variability Management is one of the most challenging tasks in a Soft-
ware Product Line (SPL) development. This is reflected in the way software is
developed, maintained and extended. Therefore, automatic variability analysis
has emerged in order to validate models in early development stages, avoiding
affecting derived products quality. In this work, we present crowd-variability,
a novel graphical tool designed for modelling and validating Orthogonal Vari-
ability Models (OVM) using Description Logics (DL)-based reasoning services.
We describe the tool and demonstrate the usage of the first prototype along with
examples of use. Currently, we are working to release the first beta version of
crowd-variability.

Keywords: Software Product Lines, Orthogonal Variability Models, Description
Logics, Graphical tools for modeling variability

1 Introduction

Software Product Lines (SPL) development involves one of the most challenging and
important activities of the domain and application engineering phases, Variability Man-
agement [1]. During the first phase, variability is defined, modelled, implemented and
validate, while in the second phase, such variability is instantiated in order to derive new
products. In this context, Variability Management has a great impact on the way soft-
ware is developed, extended and maintained. Orthogonal Variability Models (OVM) are
used to define variability and relate it to more traditional models like class diagrams, use
cases, among others. OVM validation plays a decisive role in detecting faults in a SPL
in early development stages that, on the contrary, can limit the quality of the products
derived. Due to this fact, automated variability analysis [2, 3, 4, 5] has emerged, which
focuses on a set of techniques for translating and validating variability models by con-
sidering the anomalies or mismatches these models might contain. Therefore, checking
consistency of variability models is a critical problem.

There are several works about automated variability analysis that propose different
techniques and methods [5, 6], many of them based on Feature Model analysis, which
is another language for variability. However, approaches for validating OVM diagrams
have also been undertaken. In this sense, FaMa-OVM [6] is a tool that works with
OVM specified using a textual format that are later analysed by SAT-solvers, but as

867



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

well as different SAT-based approaches, it presents certain limitations related to more
restrictive logics and thus fail to reflect the finer logical structure of variability models.

Therefore, our group presented a proposal [7] focusing on the use of Description
Logics (DL) [8] for tackling this issue. DL are a family of decidable logics that have
been widely proven to give support to software engineering in order to improve the
automated analysis. Our encoding is provided on an OVM-based language from a pre-
viously defined SeVaTax framework [9], aiming at analysing variability models proper-
ties and deriving products from an SPL. Thus, its models are formalised in DL ALCZ
[10] guaranteeing EXPTIME reasoning on SeVaTax models.

In this work, we present crowd-variability, a graphical tool for designing, visual-
ising and checking consistency of OVM diagrams. This novel client-server tool provides
graphical support for users modelling their diagrams and is integrated with automatic
DL-based reasoning [11], using OWLIink [12] as communication protocol for off-the-
shelf reasoning systems. Thus, users will visualise their OVMs in an on-line manner
while are being modelled and edited. A first Web prototype' of this tool already runs
on the client-server architecture, supports OWLIink and enables the satisfiability check-
ing process on OVM graphical diagrams. Such client-server architecture is based on an
ontology engineering environment, named crowd? [13, 14]. crowd is a multi-views soft-
ware for graphical editing of ontologies, using standard languages such as UML, EER
and ORM, and DL reasoning in order to give support to ontology engineering tasks.

This work is structured as follows. Section 2 introduces orthogonal variability mod-
els and describes each of their components. Section 3 illustrates and details the architec-
ture of this tool. Section 4 presents the first prototype developed together with a simple
example of use. Section 5 exposes a preliminary evaluation and discussions. To con-
clude the paper, section 6 elaborates on final considerations and directions for future
works.

2 Orthogonal Variability Models

Variability identifies and models variable characteristics of the products derived from
Software Product Lines [1]. Products are applications generated by properly selecting
services from a variability model and its constraints. Variability can be modelled as
part of traditional models such as class diagrams, use cases, feature models or it can
be represented by a separated model. In this regard, OVMs have emerged, which are
in charge of defining variability of a SPL, through a separated model and relating it to
other diagrams.

OVMs consist of two fundamental elements: variation points and variants. These
elements relate to each other through variability dependencies and/or constraint de-
pendencies. Both elements and interactions are depicted in Table 1.

Elements:
— Variation Point: it represents a variable object in real world.

! http://crowd.fi.uncoma.edu.ar/ovm/
nttp://crowd.fi.uncoma.edu.ar

868



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

Variation Point| Variant Requires Excludes
v v
VP
LI\
Mandatory | Optional Alternative Variant

1

Table 1. OVM Graphical Components

— Variant: it denotes how a variation point varies.
Constraint Dependencies:

— Regquires: it describes a relationship between variation points, variants or a variant
and a variation point where the selection of an element requires the selection of the
associated element to the first one.

— Excludes: it describes a relationship between variation points, variants or a variant
and a variation point where the selection of an element excludes the selection of the
associated element to the first one.

Variability Dependencies:

— Mandatory: it defines the selection of a variation point requires the selection of the
associated variants.

— Optional: it determines the selection of a variation point can require, but not neces-
sarily, the selection of the associated variants.

— Alternative: it specifies the selection of a variation point requires the selection of
only one of the associated variants.

— Variant: it defines the selection of a variation point requires the selection of at least
one of the associated variants.

Example 1. Fig.1 depicts mandatory and alternative variability dependencies modell-
ing the variability of a Remote Robotics Laboratory(RRL), which is defined through
a programming language(PL) and the type of robot (R): Frankestito[15, 16] or Mul-
tiplo N6 Max[17]. The RRL variation point allows configuring four possible products:
{RRL, R, Multiplo N6 Max, PL, Python}, {RRL, R, Multiplo N6 Max, PL, Blockly},
{RRL,R, Frankestito, PL, Python} and {RRL, R, Frankestito, PL, Blockly}. Therefore,
as at least one product can be derived, this model is considered consistent [7].

3 crowd-variability Overview

crowd-variability is a graphical modelling tool being supported by Universidad Nacional
del Comahue and Universidad Nacional del Sur of Argentina. Its main purposes are to

869



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

VP

Multiplo
N6 Frankestito Python Blockly
Max

Figure 1. OVM example for a Remote Robotics Laboratory (RRL) modeled in crowd-variability
tool.

enable users to design and visualise OVM diagrams, as well as validating them. This
tool employs complete logical reasoning in order to verify the satisfiability of specific-
ations. So as to apply automated analysis, a semantic definition of all elements of an
OVM diagram must be provided. Therefore, each variant, variation point, variability de-
pendency and constraint dependency is translated into a logic-based formalism. Finally,
this automatic variability analysis is possible due to the fact that the tool is fully integ-
rated with a powerful logic-based reasoning system acting as a background inference
engine.

crowd-variability

Formal Query
Language Generator
Translator

Graphical User

Interface Answer
Analizer

Reasoner

Figure 2. An overview of the crowd-variability client-server architecture.

An overview of the client-server architecture is shown in Figure 2. On the client
side, users are able to create and edit their models through a graphical user interface
(GUI). It offers a set of graphical primitives of the OVM language and functions re-
quired for manipulating these diagrams. The server component consists of modules in
charge of translating graphical models into a formal language, generating queries to the
reasoner, reason over OVM and processing the reasoner output. We explore each com-

870



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

ponent in turn.

Client. The Client side is composed of a View, a Model and a Graphical User In-
terface (GUI). The first two, View and Model are in constant interaction between them.
The View possesses the visual representation of the OVM diagrams, widgets and events
for handling them, while the Model contains an abstract representation of each prim-
itive of the OVM language and is able to answer diverse methods that affect it. The
corresponding models and its components are created by the external graphical library
JointJS3, which is a powerful open source JavaScript. Joint]S has been chosen among
others because it offers a wide variety of functionalities and focuses on the model that
represents each element in user diagrams and the responses to actions on the view.
Moreover, it facilitates diagrams translation into a JSON format, uses Backbone 2% to
give structure to Web Applications by providing a model-view-controller architecture
and it is capable of expanding its functions by creating and/or adding your own plug-ins.

On the other hand, the crowd-variability Graphical User Interface is an user-
interface mashup [18], which is based on widgets aggregating sets of functionalities
in a common graphical space. It is associated to a set of cross-view widgets, such as
tool-bars and user management, and a set of specific-view ones, icons, among others.
These widgets are orchestrated by the system, through event notifications generated by
each one as the user interacts. Last but not least, the user interface component also
provide us with functionalities such as user login, model store and interoperability with
other tools through JSON importing and exporting in addition to OWLlIink files.

Server. The Server side comprises a Formal Language Translator, a Query Gener-
ator, an Answer Analyzer and a Reasoner. The Formal Language Translator module
takes a JSON representation of an user’s model and translates it into a formal language
and write it to an OWLIink file, which is later sent to the reasoner together with a
set of queries. This queries are appended to the file after being generated by a Query
Generator module, so that the reasoning system can determine the consistency of the
model provided by the user. Afterwards, Reasoner module connects to an off-the-shelf
reasoning system, p.e. Racer [19], for processing the OWLIink document and returns a
new OWLlIink document including the responses to these queries. Finally, the Answer
Analyzer processes the reasoner output in order to give the conclusions to users. The
output is a new JSON object indicating the consistency of the whole model and each
one of this concepts.

4 First Prototype and Example of Use

The client side of crowd-variability first prototype runs in a Web browser and has been
developed using CoffeeScript, a programming language that compiles into JavaScript,
PHP and Joint]S library, which has been used to build a new plug-in for OVM. The
server side runs in an Apache server and has been developed using PHP. The prototype
offers users the possibility of graphically visualising their OVM diagrams, while they
are being designed and edited. It also supports the complete set of OVM primitives as

® https://www.jointjs.com/opensource
4 http://backbonejs.org/

871



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

described in section 2. Once built the model, users may request its consistency eval-
uation. At the moment, crowd variability prototype allows OVM diagrams translation
into ALCZ DL. Currently, the integrated reasoner in this tool is Racer[11]. Table 2
shows some variability dependencies, its associated graphics and its ALCZ DL encod-
ing. For more details refer to [7].

Expression |crowd-variability graphic ALCT DL encoding
Optional Juplol=! C VPL
Variability
Dependency v V1CE< loplol™ M > loplul™
Alternative ﬁ VP1 C Juplel=! M Jupleu2=?
Variability A 1 C Juplel N Juplo2
Dependency i — V1CE<L loplvl 1 > loploul™
V2 E< loplv2™ 1 > luplv2™
Variant ﬁ VP1 C Juplol=! U Juple2™!
Variability V1CE< loplol M > loplul™
Dependency ety V2 E< loplv2™ 1 > luplu2™

Table 2. OVM Variability Dependencies

Encoding has suffered some changes from the original one because of pragmatic
reasons. In [7], each variant and variation point are represented by singleton concepts
and dependencies are represented by roles. However, it does not present any axiom to
ensure the singleton property of the classes. Therefore, in order to accomplish that, we
have modified the codification by adding cardinalities.

The JSON object to be sent to the reasoner contains information about each element
in the diagram. JSON object also includes data about the diagram itself together with
options to manage the visualisation of the primitives. For variants and variation points,
it records its name and position. For constraint and variability dependencies, it keeps
information about its name, origin, targets and type of dependency. In particular, for
alternative and variant variability dependencies, it registers its position. Fig. 4 presents
the JSON representation and Fig. 5 the respective DL encoding in OWLIink format for
the model in Fig. 3.

The crowd-variability Editor works on diagrams, which may contain only one OVM
diagram. The diagrams are referred as models. Only one diagram is visible at a time and
the editing of each of them is independent. The tool does not implement special visual
techniques for handling very large diagrams yet.

872



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

crowd-wariability

OVM Reasoning Details Verbalisation Profile

Figure 3. Look and feel of a mandatory dependency example in crowd-variability.

rowd — variability”,
GILIA — Universidad Nacional del Comahue”}],
version”:"" " displayRequi ”

"owner
"graphops”:[{” language”:” ovim

Ptrue” " displayMandatory ”:
7 displayOptional”:”

"displayExcludes
“displayAlternative”:” true” ,
"variation_points”:[{” name”:” RRL” ,” {77462,y
7wvariants”:[{” name”:"R”,” position” 5,7y7:109}}],
"constraint_dependencie
"variability_dependencies

{"metadata”:[{” tool”:”

27 7 displayVariant”:” true” }],

.7 type”:” mandatory” }]}

:[{"name” :”ml1” ,” origin”:"RRL” ,” target ”

Figured4. crowd-variability JSON representation of model in Figure 3

//Mandatory Dependency Domain //RRL T Jrrlr="
//3rrlr © RRL <owl:SubClassOf>
<owl:SubClassOf> <owl: Class IRI="rrl”/>
<owl: ObjectSomeValuesFrom> <owl:ObjectIntersectionOf>
<owl:ObjectProperty IRI="rrlr”/> <owl:ObjectSomeValuesFrom>
<owl: Class abbreviatedIRI="owl: Thing”/> <owl:ObjectProperty IRI="rrlr”/>
</owl:ObjectSomeValuesFrom> <owl: Class IRI="owl: Thing” />
<owl: Class IRI="rrl”/> </owl:ObjectSomeValuesFrom>
</owl:SubClassOf> <owl:ObjectMaxCardinality cardinality="1">

<owl:ObjectProperty IRI="rrlr"/>
</owl:ObjectMaxCardinality >
</owl: ObjectIntersectionOf>
</owl:SubClassOf>

//Mandatory Dependency Range //IRCT> 1rrlr— 1 < 1rrir™
//3rrlr- C R <owl: Class IRI="r"/>
<owl:SubClassOf> <owl: ObjectIntersectionOf>

<owl: ObjectMaxCardinality cardinality=
<owl:ObjectInverseOf>
<owl:ObjectProperty IRI="rrlr”/> <owl:ObjectProperty IRI="rrlr”/>
</owl:ObjectInverseOf> </owl:ObjectInverseOf>
<owl: Class abbreviatedIRI="owl: Thing”/> </owl:ObjectMaxCardinality >
</owl:ObjectSomeValuesFrom> <owl: ObjectMinCardinality cardinality="1">
IRI="r"/> <owl:ObjectInverseOf>
ssOf> <owl:ObjectProperty IRI="rrlr"/>
</owl:ObjectInverseOQf>
</owl: ObjectMinCardinality >
</owl: ObjectIntersectionOf>
</owl:SubClassOf>

<owl: ObjectSomeValuesFrom>
<owl: ObjectInverseOf>

FigureS. crowd-variability OWLIink representation of mandatory dependency in Figure 3

873



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

For depicting the current look and feel of crowd-variability editor, Fig. 3 models a
mandatory variability dependency between a variation point RRL and a variant R. Both
elements were created by pressing the buttons highlighted in red. The GUI includes
tool-bars for variation points and variants that presents users’ options to change their
name(pencil button), add the respective constraint(right arrow button) or variability(up
arrow button) dependencies and delete them(cross button). In particular, the depend-
ency in Fig. 3 has been created by pressing the button with an up arrow of the RRL’s
tool-bar colored in orange, as variants do not have the option of creating variability
dependencies.

5 Preliminary Evaluation

crowd-variability has been designed as an extensible and sustainable architecture. It has
been developed using expansible graphical libraries and Web technologies. Therefore, it
can be extended to other variability modelling proposals such as Feature Models (FM),
Common Variability Language (CVL) and SeVaTax. These proposals have a similar ex-
pressiveness, however, there are great differences between them. Feature Models model
variability through a hierarchical set of features and its relationships [20]. Common
Variability Language is a domain-independent language for specifying and resolving
variability [21]. SeVaTax is an extension of the orthogonal variability models [9].

From a graphical point of view, JointJS graphics library offers the possibility of
expanding its functionalities by creating or/and adding new plug-ins, that specify each
primitive of new variability modelling languages. Furthermore, new formalisation meth-
ods, like the one for OVM diagrams presented in [7], can be incorporated.

Currently, this tool is integrated with Racer reasoning system. Nonetheless, new
back-end reasoners can be connected to the tool.

Hence, a relevant feature of crowd variability is to consider users’ preferences and
usages, allowing the selection of different approaches to model variability and distinct
reasoners for the reasoning service.

6 Comparison with other tools

Currently, the increment of the complexity of information systems determine more com-
plex OVM to be modeled. Therefore, manual management of such models becomes an
impossible labor without an automated tool support. In this regard, we have surveyed
existing tools in certain aspects like model specification and its integration with auto-
matic reasoning systems.

FaMa-OVM][6] is an extensible tool for automated analysis of OVM diagrams, in-
tegrated with multiple off-the-shelf reasoners such as SAT4j, JavaBDD and Choco-
Solver. However, its input model is specified in a textual format, which describes the
model relationships, constraints, attributes and global attributes. These last two features
correspond to OVM diagrams with attributes, also supported by FaMa-OVM, although
the use of a textual format makes the model specification a difficult and error-prone
task.

874



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

In [5], OVM models are formalised in VFD+ (based in FFD), a parametric construct
designed to define the syntax and semantics of FODA-inspired Feature Diagrams(FD)
languages. Nonetheless, in order to automate the analysis, the models in VFD+ are
translated into CNF to be later sent to the SAT4;j solver that determines the formula
satisfiability. Furthermore, this tool does not offer any graphical front-end yet.

As it has been mentioned before, both SAT-approaches present certain limitations
related to more restrictive logics and thus failing to reflect the finer logical structure of
variability models. On these proposals, the relationships among services are missed
when embedding variability models in CNF(Conjunctive Normal Form). As a con-
sequence, the domain validation process involves several product-by-product SAT checks.
For this reason, identifying inconsistency sources is hard in such approaches as has also
been evaluated in [9].

7 Conclusions and Future Work

In this work, we have presented crowd-variability, a Web tool that integrates graphical
support for orthogonal variability models design and automatic reasoning so as to val-
idate such models. It pursues to solve those limitation presented in surveyed proposals
based on SAT-solvers through the use of description logics. Moreover, we aim to avoid
error occurrences in models design by focusing on a graphical user interface with a set
of primitives of the OVM language and the necessary functions for diagrams construc-
tion and edition. Taking this into consideration, we have reached the first prototype of
crowd variability, which allows simple OVM designs and its consistency analysis by
logic reasoning systems. Finally, we address extensions tool capability in a preliminary
evaluation.

In future works, we plan to continue evaluating crowd-variability, enhance and ex-
tend its functionalities. Currently, it determines when a model is valid, however, we
also aim to be able to determine dead services, i.e. services that will never be derived
for a product, valid product instantiations and to explain the inconsistencies found in
the OVM.

References

1. Klaus Pohl, Giinter Bockle, and Frank J. van der Linden. Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

2. Fabricia Roos-Frantz, José A Galindo, David Benavides, Antonio Ruiz Cortés, and J Garcia-
Galdn. Automated analysis of diverse variability models with tool support. Jornadas de
Ingenieria del Software y de Bases de Datos (JISBD 2014), Cddiz. Spain, page 160, 2014.

3. David Benavides, Sergio Segura, and Antonio Ruiz-Cortés. Automated analysis of feature
models 20 years later: A literature review. Inf. Syst., 35(6):615-636, September 2010.

4. Matthias Kowal, Sofia Ananieva, and Thomas Thiim. Explaining anomalies in feature mod-
els. In Proceedings of the 2016 ACM SIGPLAN International Conference on Generative Pro-
gramming: Concepts and Experiences, GPCE 2016, pages 132-143, New York, NY, USA,
2016. ACM.

875



XXIV Congreso Argentino de Ciencias de la Computacién Tandil - 8 al 12 de octubre de 2018

5. A. Metzger, K. Pohl, P. Heymans, P. Y. Schobbens, and G. Saval. Disambiguating the doc-
umentation of variability in software product lines: A separation of concerns, formalization
and automated analysis. In /5th IEEE International Requirements Engineering Conference
(RE 2007), pages 243-253, Oct 2007.

6. Fabricia Roos Frantz, José Angel Galindo Duarte, David Felipe Benavides Cuevas, and Ant-
onio Ruiz Cortés. FaMa-OVM: A tool for the automated analysis of ovms. In Proceedings of
the 16th International Software Product Line Conference - Volume 2. SPLC ’12, ACM, New
York, NY, USA, 2012.

7. German Braun, Matias Pol’la, Laura Cecchi, Agustina Buccella, Pablo Fillottrani, and Ale-
jandra Cechich. A DL Semantics for Reasoning over OVM-based Variability Models. 2017.

8. Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for conceptual
data modeling. In Logics for Databases and Information Systems, pages 229-263. Kluwer,
1998.

9. M. Pol'la, A. Buccella, M. Arias, and A. Cechich. Sevatax: service taxonomy selection
validation process for spl development. In 2015 34th International Conference of the Chilean
Computer Science Society (SCCC), pages 1-6, Nov 2015.

10. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American, May
2001.

11. Volker Haarslev, Kay Hidde, Ralf Méller, and Michael Wessel. The racerpro knowledge
representation and reasoning system. Semantic Web Journal, 2012.

12. Thorsten Liebig, Marko Luther, Olaf Noppens, and Michael Wessel. Owllink. Semantic
Web, 2(1):23-32, 2011.

13. Christian Gimenez, German Braun, Laura Cecchi, and Pablo Fillottrani. Una arquitectura
cliente-servidor para modelado conceptual asistido por razonamiento automético. In XVIII
Workshop de Investigadores en Ciencias de la Computacion, 2016.

14. Christian Gimenez, German Braun, Laura Cecchi, and Pablo Fillottrani. crowd: A tool for
conceptual modelling assisted by automated reasoning - preliminary report. In the 2nd Sim-
posio Argentino de Ontologias y sus Aplicaciones SAOA "16 JAIIO 16, 2016.

15. Eduardo Grosclaude, Rafael Zurita, Rodolfo del Castillo, Miriam Lechner, and José
Riquelme. Designing a myro-compatible robot for education as copyleft hardware. In XX
Congreso Argentino de Ciencias de la Computacion (Buenos Aires, 2014), 2014.

16. Rafael Zurita, Juan de la Fuente, Martin Bucarey, Daiana Bonet, Rodolfo del Castillo,
Guillermo Grosso, Laura Cecchi, Jorge Rodriguez, et al. Mejorando las posibilidades de
aprender a programar, ampliacién del robot educativo multiplo n6 max a frankestito. In X7/
Congreso de Tecnologia en Educacion y Educacion en Tecnologia (TE&ET, La Matanza
2017).,2017.

17. Multiplo —Open Source Robotics Building System. Ultimo acceso Julio 2018, website
http://www.robotgroup.com.ar/en/kits—de-rob%C3%B3tica/robots/
né-max-detail.

18. Ahmet Soylu, Felix Mddritscher, Fridolin Wild, Patrick De Causmaecker, and Piet Desmet.
Mashups by orchestration and widget-based personal environments: Key challenges, solution
strategies, and an application. Program, 2012.

19. V. Haarslev and R. Moller. Racer system description. In R. Goré, A. Leitsch, and T. Nipkow,
editors, International Joint Conference on Automated Reasoning, IJCAR’2001, June 18-23,
Siena, Italy, pages 701-705. Springer-Verlag, 2001.

20. K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University Pittsburgh, PA., 1990.

21. O.Haugen, B. Moller-Pedersen, J. Oldevik, G. K. Olsen, and A. Svendsen. Adding standard-
ized variability to domain specific languages. In 2008 12th International Software Product
Line Conference, pages 139-148, 2008.

876



	A GraphicalWeb Tool with DL-based Reasoning

