
M. Gavrilova et al. (Eds.): ICCSA 2006, LNCS 3983, pp. 148 – 157, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Designing and Implementing Physical Hypermedia
Applications

Cecilia Challiol1, Gustavo Rossi 1,3,*, Silvia Gordillo1,2, and Valeria De Cristófolo1

1 LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
{ceciliac, gustavo, gordillo, valeriac}@sol.info.unlp.edu.ar

http://www-lifia.info.unlp.edu.ar
2 Also CICPBA

3 Also CONICET

Abstract. In this paper we present a design approach and a software framework
for building physical hypermedia applications, i.e. those mobile (Web) applica-
tions in which physical and digital objects are related and explored using the
hypermedia paradigm. We show how we extended the popular MVC metaphor
by incorporating the concept of located object, and we describe a framework
implementation using Jakarta Struts. We first review the state of the art of this
kind of software systems, stressing the need of a systematic design and imple-
mentation approach; we briefly present a light extension to the OOHDM design
approach, incorporating physical objects and “walkable” links. We next present
a Web application framework for deploying physical hypermedia software and
show an example of use. We compare our approach with others in this field and
finally we discuss some further work we are pursuing.

1 Introduction

A physical hypermedia (PH) application is a kind of ubiquitous software in which the
mobile user can explore real world objects using the hypermedia paradigm. In these
software systems, physical objects are augmented with digital information in such a
way that when the user is in the vicinity of an object, he can access the additional
information. Besides, physical objects can be seen as nodes in a hypermedia network;
the user can follow a link to navigate to other related objects, either virtually, e.g.
when the links are implemented using a Web browser, or physically by moving to the
target object.

A simple example is a mobile tourist guide. When the user is in front of a monu-
ment he can read information about the monument in his mobile device (e.g. in a Web
page); he can also explore the digital hyperspace by navigating to other related docu-
ments. Some links, however, may point him to other tourist spots in the same city.
Instead of navigating in the usual digital way, he has to “walk” the link [9]. The soft-
ware system may react to his intention to navigate by providing him a map showing
the best way to access the target place. Notice that this application behavior, while
somewhat similar to existing families of location-based services, is completely based

* This work has been partially funded by Project PICT 2003, Nro 13623, SeCyT.

 Designing and Implementing Physical Hypermedia Applications 149

on the well-known ideas of hypermedia navigation that became popular with the Web.
It is not surprising then that the physical hypermedia paradigm has been considered to
be a good vehicle to integrate the Web and the world [8] and as a tool to improve
collaboration in a social setting [3].

We have been working on different aspects of the PH applications’ life cycle. In
[6] we presented a modeling and design approach that allows a high-level specifica-
tion of the intended functionality of a PH application. In [5] we analyzed a more
complex engineering aspect of this kind of software: how to clearly decouple the most
critical concerns that designers face when building PH software. We defined the con-
cept of concern-driven navigation to support the user while exploring different appli-
cation themes and to clearly separate digital from physical navigation.

In this paper we present a software framework that allows seamless implementa-
tion of PH applications. This framework, which implements an extension of the popu-
lar MVC metaphor, has been built on top of the well-known Jakarta Struts [16] Java
infrastructure and therefore can be easily used by Web application designers.

The main contributions of this paper are the following:

• We present a reusable software substrate that supports the main abstractions in
the PH paradigm,

• We show how to integrate this framework with a modular design approach
thus covering the full PH software life cycle.

• By describing the implementation of a simple application we introduce a set of
good design practices that help the implementer to cope with the difficulties
that arise while building this kind of ubiquitous web software

The rest of the paper is organized as follows: In Section 2 we describe the require-
ments of an implementation framework for PH and present some background con-
cepts needed in the rest of the paper. In Section 3 we present our extension to the
MVC metaphor and describe our framework implementation. In Section 4 we present
an example of use of the framework. In Section 5 we compare our work with other
similar approaches and in Section 6 we present some concluding remarks and further
work on this area.

2 Requirements and Background

Researchers have emphasized the feasibility of the PH paradigm by building software
infrastructures that support the ideas underlying PH [7, 8, 13]. However, we think that
for PH applications to become mainstream we need to provide tools to build them as a
particular class of mobile Web software, i.e. we need to specialize existing Web de-
velopment architectures and frameworks in such a way that they support the main
concepts behind PH. We also need to provide a conceptual framework to reason on
this kind of software and a comprehensive bridge among modeling concepts and the
implementation tools. Particularly, a development framework must:

- simplify the development of this kind of software, providing reusable classes
and semi-complete application structures together with “hot-spots” in which
developers can add the specific aspects of their own applications,

150 C. Challiol et al.

- allow a clear separation between application objects and the lower level aspects
needed to indicate their physical position and to check whether a user is in front
of an object,

- support different navigation strategies, such as digital (as in the Web) or physi-
cal, allowing the designer to easily implement both of them,

- provide ways to maintain basic contextual information, e.g. when the user navi-
gates digitally, keep the physical links corresponding to the current location
visible.

- Additionally, supporting different mobile devices is a must; finally, applications
built using the framework should also support conventional access, e.g. from a
desktop browser. In the following sub-sections we briefly describe some
background concepts that we will use throughout the paper, namely the phi-
losophy underlying our design approach, and the basic concepts behind the
MVC metaphor.

2.1 Design Issues for Physical Hypermedia

To make this discussion concrete, we define a PH application as a hypermedia appli-
cation (i.e. the access to information objects is done by navigation) in which all or
some of the objects of interest are real-world objects which are visited by the user
“physically”. The most usual scenario for these applications involves a mobile user
and some location sensing mechanism and underlying software that can determine,
for example, when the user is within interaction range of one of these objects. For the
sake of conciseness, we also assume that digital information (data about physical
objects and links) is obtained from a Web server and navigated using a browser. A
simplify schema showing these ideas is presented in Figure 1.

Fig. 1. Physical Hypermedia and the Web

We chose to extend the Object-Oriented Hypermedia Design Method (OOHDM)
[14] by incorporating the concept of physical objects and “walking” navigation [9]. In
a PH application, we aim at expressing, in an implementation-independent way,
which are the objects of interest and their properties (including their location), how
they are linked, which links should be implemented as conventional and which should
be “walked” by the user. Following our approach, a PH application is developed in a
four stages process: application modeling, navigation design, user interface design
and implementation.

During application modeling we produce a two-layered model; the first layer con-
tains the application objects, their properties, relationships with other objects and

 Designing and Implementing Physical Hypermedia Applications 151

behaviors (described in UML [17]); in the second one, we describe the physical (e.g.
location) counterparts of application classes. Physical Objects are described as roles,
in fact decorations [15,4] of digital objects and contain the object’s location, geo-
graphical relationships, and the behaviors needed to manipulate positions, such as
determining if the user is in front of the object or calculating how to reach a physical
object. In Figure 2, we show these two layers.

Fig. 2. The products of Application Modeling

The two physical classes (PH_A, and PH_B) wrap application classes A and B, thus
obliviously adding them their physical properties. The navigation model specifies
which nodes the user will explore and the links connecting these nodes. Nodes are
defined as views on application objects and contain the information to be displayed.
Links can be digital or physical. A digital link allows “conventional” navigation (i.e. as
in the Web), while physical or “walking” links express a relationship in which the
target object is physical, and exploring the object implies that the user must change his
current position. Notice that physical links might be derived from both conceptual and
geographical relationships. More details on the design approach can be read in [5,6].

2.2 The MVC Metaphor for Web Applications Development

The Model-View-Controller [11] is perhaps the most established paradigm for devel-
oping interactive applications. Originally developed for desktop software in the con-
text of the Smalltalk environment, it has evolved and it is widely used in Web appli-
cations development. It proposes to partition the concerns of an interactive application
in three components.

- the Model, which contains the basic application’s data and behaviors.
- the View(s) which comprises the user interface objects.
- the Controller (s) which is in charge of managing user interaction, and coor-

dinating the View and the Model.

The MVC has been implemented in different platforms and there are dozens of
tools supporting software development with the MVC, for example [10]. In our case,
we decide by the popular Jakarta Struts.

We chose to extend the MVC model for several reasons: first, MVC provides a
reasonable model for separation of concerns in (mobile) Web applications; besides,
we have used MVC-based architectures to support the implementation stage for
OOHDM models [2], and finally it is a well-known metaphor, used in every modern
middleware platform for Web application development. In the following sections
we describe our approach, concentrating in the server-side. Details on client side

152 C. Challiol et al.

adaptations such as providing communication mechanisms between sensing hard-
ware and software and Web browsers, though important in our research, are outside
the scope of this paper.

3 A MVC Framework for Physical Hypermedia

From a thorough analysis of each one of the MVC's components, we decided to ex-
tend the Controller component to support location-aware requests. We decided to do
this because we found that both the View and the Model components can support
Physical Hypermedia functionality, without modifying their essence.

As explained in Section 2 the Controller acts as a coordinator among the Model
and the View. In our extension, the controller will need to identify if a request implies
managing a location, and it will be in charge to process those requests that do involve
location information.

3.1 A Conceptual View of the Location-Aware MVC

The two main components of the controller are, according to [10]: the InputControl-
ler and the ApplicationController. Our extension involves the InputController since it
deals with resolving a parameter of the request, in particular the recognition of the
physical object in the user’s vicinity. For the sake of modularity and compatibility we
avoided changing this component but we introduced a new one, the LocationControl-
ler. In this way we didn’t clutter the standard controller with new functionality and,
besides, both of them can evolve separately.

The LocationController will deal with those implicit or explicit parameters which
correspond to requests that involve location information. Considering that the kind of
pre-processing needed by a broader range of applications might involve other issues,
we devised a DispatcherController as a Façade [4] to determine which specific con-
troller receives control; i.e. depending on the nature of the application the Dis-
patcherController establishes which Controller will be the actual InputController's
collaborator as shown in Figure 3. In the case of requests which do not need any pre
processing, the DispatcherController delegate control directly to the ApplicationCon-
troller.

I n p u t
C o n t r o l l e r

L o c a t i o n
C o n t r o l l e r

A p p l i c a t i o n
C o n t r o l l e r

X C o n t r o l l e r

D i s p a t c h e r
C o n t r o l l e r

. . .

. . .
Y C o n t r o l l e r

Fig. 3. Adding a new Controller

The DispatcherController analyzes the request. If it is a pure digital request it
delegates control to the ApplicationController. If the request involves location infor-
mation it delegates to the LocationController, which will analyze the location issues.
A complete diagram of the extended MVC architecture is shown in Figure 4. To make
the discussion more concrete we next detail our Struts implementation.

 Designing and Implementing Physical Hypermedia Applications 153

B u s i n e s s
O b j e c t

A p p l i c a t io n
C o n t r o l l e r

V i e w

I n p u t
C o n t r o l l e r

n o t i f i c a t i o n

n o t i f i c a t i o n

D i s p a t c h e r
C o n t r o l l e r

L o c a t i o n
C o n t r o l l e r

Fig. 4. Extended MVC for Physical Hypermedia

3.2 Adding Location-Awareness to Struts

By distinguishing the format of a URL contained in a request, Struts allows to define
more than one control Servlet. In our implementation, a URL with the traditional
format (*.do), will be dealt by the ActionServlet. Meanwhile, a URL with a location-
compliant form (in our case /location/*), will be analyzed by the LocationActionServ-
let. This is an easy and straightforward way to implement the task of the Dispatcher-
Controller. Both, the configuration of the new Servlet, and the format of the location-
compliant URL are configured in the Struts file web.xml. We next examine how to
carry out the LocationController's task.

Physical Hypermedia applications may use different location models (e.g. sym-
bolic, geometric, etc); this means that the location contained in the request has to be
interpreted in the corresponding location system to obtain a correct result. To achieve
this goal we decouple the corresponding functionality and create a hierarchy of Loca-
tionFinder classes.

LocationFinder is an abstract class which describes the common functionality of
all location finders. Concrete subclasses (e.g. SymbolicLocationFinder) allow the
developer to specialize this functionality. Sub-classes must implement at least two
methods: one to identify the physical object which the user is facing (inFrontOf), and
the other that returns the path between two physical objects (howToReachFrom).
Each concrete sub-class implements this functionality using the concrete location
model and interacting with physical (application) objects defined in the Model com-
ponent.

As the objects returned by these methods must be used both by the Actions and by
the JSPs (the View) we make them persistent by storing them in the Struts’s session,
under the name specified by the developer in the configuration file.

Following the standard way to extend Struts with specific business logics, we de-
cided to create a specialized RequestProcessor, the LocationRequestProcessor, which
is configured in the file location-struts-config.xml. The LocationRequestProcessor
collaborates (with the mediation of the LocationActionServlet) with the concrete Lo-
cationFinder to implement the pre-processing of the request.

To complete the specification we also defined: LocationEvent (an obligatory prop-
erty in the configuration file location-struts-config.xml, which allows to specify
which of the LocationFinder´s method must invoke the LocationRequestProcessor),
LocationActionMapping (allows the retrieval of the new LocationEvent property),
Location-struts-config_1_1.dtd (allows considering the incorporation of the new
property), LocationConfigRuleSet (incorporate the new property to the structure of the
file location-struts-config.xml).

154 C. Challiol et al.

In summary the relation between the MVC elements and those that arise from the
extension of Struts can be represented as shown in Figure 5:

* .d o

s t r u t s - c o n f ig . x m l

lo c a t io n - s t r u ts - c o n f ig .x m l

A p p l i c a t i o n C o n t r o l l e r

L o c a t i o n C o n t r o l l e r

D i s p a t c h e r
C o n t r o l l e r

/ lo c a t io n / *

s t r u t s - c o n f ig _ 1 _ 1 . d td

lo c a t io n - s t r u ts - c o n f ig _ 1 _ 1 . d t d

R e q u e s t
P r o c e s s o r

L o c a t i o n
R e q u e s t

P r o c e s s o r

L o c a t i o n
A c t i o n

M a p p in g

C o n c r e t e
L o c a t io n

F in d e r

A c t io n
M a p p in g

C o n g if
R u le S e t

A c t io n

L o c a t i o n
C o n g if

R u le S e t

A c t io n
S e r v le t

L o c a t io n
A c t io n
S e r v le t

Fig. 5. The complete Struts extension for handling location data

4 Using the Framework

As a proof of concept we have instantiated the framework in a Natural Sciences Mu-
seum. Though our prototype uses a particular sensing mechanism (infrared sensors)
and location model (symbolic), most design decisions can be easily understood while
analyzing the example. We first produced a conceptual model, including the location
enrichment. In Figure 6 we show a simplified diagram including some attributes and
relationships for animals and the period in which they lived. The location attribute has
been simply defined as an identifier, because we used a simple location model. Physi-
cal Animal also includes some attributes corresponding to the physical object. Objects
in the conceptual model have been instantiated and mapped into a Java implementa-
tion; the specification of nodes in the navigational model were used to produce a set
of JSP specifications (some of them are shown in Figure 8.a and 8.b).

Fig. 6. Application and Physical Models for the Museum

Suppose that the user is in front of a Herrerasaurus (whose corresponding sensor
emits the identifier “1”). The sequence diagram in Figure 7 shows how the process of
generating the corresponding page proceeds.

L o c a t io n
A c t io n
S e rv le t

L o c a tio n
R e q u e s t

P ro c e s s o r

L o c a t io n
A c t io n

M a p p in g

In F r o n t O f
A c t io n

J S P

/ lo c a t io n /
In F r o n tO f?
id = 1 p ro c e s s ()

c re a te A c t io n In s ta n c e ()

p e r fo rm () f o rw a rd T o ()

E xa m p le
L o c a t io n

F in d e r

in F r o n tO f (r e q u e s t)

A c tio n In s ta n c e

Fig. 7. Viewing information on a physical object

 Designing and Implementing Physical Hypermedia Applications 155

The ExampleLocationFinder, has the responsibility of finding the application ob-
jects which corresponds to the physical object with id “1”. As a response the user
receives the page shown in Figure 8.a, in which digital links are in the top pane and
physical information and links in the bottom pane.

We used the Builder design pattern [4] to separate the construction of the two ele-
ments of the JSP (digital and physical information); this allows us to provide digital
navigation (e.g. the user clicks on “Triasic Period”) without changing the physical
links exposed to the user. This means that while the user stands in front of the
Herrerasaurus, the bottom pane does not change, as shown in Figure 8.b.

Physical links pose another implementation challenge. For example when the user
selects “Diatrina” (another physical object in the museum), he should be instructed on
the best way to reach the object, e.g. showing him a map as shown in Figure 9.

Fig. 8. a: Exploring a physical object, b: Pure Digital navigation

Fig. 9. The physical path to reach an object

In our extended MVC framework, the execution sequence is similar to the one in
Figure 7. The only changes are the invocation of the request, the method that is executed
in the ExampleLocationFinder, and the Action that performs the needed behavior.

We were able to develop the whole application by thinking in terms of a typical
Web application, modeling it using the light extension of OOHDM and using pre-
defined classes of our Struts extension.

5 Related Work

In [8] a comprehensive framework (HyCon) for deploying applications in which the
hypermedia paradigm is extended to the physical world is presented. In [13] mean-
while, an object-oriented framework called HyperReal, based on the Dexter hypertext
reference model is presented. We have followed a different strategy; instead of build-
ing a full-fledged, proprietary framework, we decided to extend a popular and widely
used framework like MVC and its Struts implementation. In our first release, we de-
cided to sacrifice facilities to keep our extension small and easy to use. The other
important difference with respect to existing approaches is that our development
framework is accompanied by a modeling and design approach. While the literature

156 C. Challiol et al.

has focused mainly on implementation and usability issues (See [8]), we think that
modeling and design aspects are critical to assure quality and quality of use.

6 Concluding Remarks and Further Work

In this paper we have presented a design and implementation framework for develop-
ing physical hypermedia applications, i.e. those applications in which physical and
digital objects are related using the hypermedia paradigm.

We have shown how to slightly extend the MVC metaphor to support location-
aware controllers; we have then presented a Jakarta Struts implementation of our
ideas, together with a simple proof of concept for a physical hypermedia in a Natural
Sciences Museum. In this implementation, we have shown how to keep physical links
available while navigating digitally.

We are currently working on several research directions. One of them relates with
providing better modeling and design tools to express navigational structures. We are
also experiencing further navigation issues. Physical navigation introduces new pos-
sibilities such as deviating from the suggested path (e.g. as shown in Figure 9) to
explore other objects. We are researching on which software support must be pro-
vided by an application framework to support the developer job in keeping track of
the user trajectory, suggest possible stops, etc. We are still compromised to closely
follow the MVC metaphor, even in this kind of extensions. Many of the issues dis-
cussed here have been previously explored, for example in the hypertext community
[1], though standard developing tools do not exist yet. We are finally porting our
implementation to the .Net platform and studying usability issues.

References

1. Adaptive Hypermedia Home Page: http://wwwis.win.tue.nl/ah/
2. M. Douglas, D. Schwabe, G. Rossi: A software arquitecture for structuring complex Web

Applications. Journal of Web Engineering 1 (1): 37-60 (2002)
3. F. Espinoza, P. Persson, A. Sandin, H. Nystrom, E. Cacciatore, M. Bylund: GeoNotes: So-

cial and Navigational Aspects of Location-Based Information Systems. Proceedings of
Third International Conference on Ubiquitous Computing (Ubicomp 2001), Springer Ver-
lag, 2-17

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns. Elements of reusable ob-
ject-oriented software, Addison Wesley 1995

5. S. Gordillo, G. Rossi, D. Schwabe: Separation of Structural Concerns in Physical Hyper-
media Models. CAiSE 2005: 446-459

6. S. Gordillo, G. Rossi, F. Lyardet: Modeling Physical Hypermedia Applications. SAINT
Workshops 2005: 410-413

7. K. Gronbaek, J. Kristensen, M. Eriksen: Physical Hypermedia: Organizing Collections of
Mixed Physical and Digital Material. Proceedings of the 14th. ACM International Confer-
ence of Hypertext and Hypermedia (Hypertext 2003), ACM Press, 10-19

8. F. Hansen, N. Bouvin, B. Christensen, K. Gronbaek, T. Pedersen, J. Gagach: Integrating
the Web and the World: Contextual Trails on the Move. Proceedings of the 15th. ACM In-
ternational Conference of Hypertext and Hypermedia (Hypertext 2004), ACM Press. 2004

 Designing and Implementing Physical Hypermedia Applications 157

9. S. Harper, C. Goble, S. Pettitt: proximity: Walking the Link. In Journal of Digital Infor-
mation, Volume 5, Issue 1, Article No 236, 2004-04-07. Available at:
http//jodi.ecs.soton.ac.uk/Articles/v05/i01/Harper/

10. A. Knight, N. Dai: Objects and the Web. IEEE Software, January/February 2002, 51-59,
11. 11.G. Krasner, S. Pope: A Cookbook for Using Model-View-Controller User Interface

Paradigm in Smalltalk-80. Journal of Object Oriented Programming, August/September,
1988, 26-49.

12. OMG Model-Driven-Architecture. In http://www.omg.org/mda/
13. 13.L. Romero, N. Correia: HyperReal: A Hypermedia model for Mixed Reality. Proceed-

ings of the 14th ACM International Conference of Hypertext and Hypermedia (Hypertext
2003), ACM Press, 2-9

14. D. Schwabe, G. Rossi: An object-oriented approach to web-based application design. The-
ory and Practice of Object Systems (TAPOS), Special Issue on the Internet, v. 4#4, Octo-
ber, 1998, 207-225.

15. F. Steimann: On the Representation of Roles in Object-Oriented and Conceptual modeling.
Data and Knowledge Engineering 35 (2000) 83-106

16. The Struts Home Page: http://struts.apache.org/
17. The UML Home Page: www.omg.org/uml/

