
COMPUTER SCIENCE & TECHNOLOGY SERIES 71

Comparison of
Communication/Synchronization Models in

Parallel Programming on Multi-Core Cluster

ENZO RUCCI, ARMANDO E. DE GIUSTI, FRANCO CHICHIZOLA,
R. MARCELO NAIOUF AND LAURA C. DE GIUSTI

Instituto de Investigación en Informática LIDI (III-LIDI) – School of Computer Science –
Universidad Nacional de La Plata, Argentina.

{erucci, degiusti, francoch, mnaiouf, ldgiusti}@lidi.info.unlp.edu.ar.

Abstract. Taking into account the increase in use of the multi-core
cluster architecture, in this paper we analyze the use of the various
communication models (message passing, shared memory, their
combination) to efficiently exploit the power of the architecture.
Smith-Waterman algorithm, whose parallelization is based on a
pipeline scheme due to problem data dependence, is used as test case
to determine the similarity degree of two DNA sequences.
Finally, future research lines are mentioned, aimed at optimizing the
use of memory levels in the architecture.

Keywords. multi-core cluster, hybrid communication model, pipeline,
Smith-Waterman.

1. Introduction

The study of distributed and parallel systems is one of the most active
research lines in Computer Science nowadays [1][2]. In particular, the use of
multi-processor architectures configured as clusters, multi-clusters, and grids,
supported by networks with different characteristics and topologies has
become generalized, for the development of both parallel algorithms and
distributed Web services [3][4][5]. Cloud computing developments follow the
same line [6].
The technological change, mainly based on multi-core processors, has created
the need for researching mixed or hybrid models where shared memory and
message schemes are in coexistence [7][8].
In this context, it is important to study the modeling of the behavior of this
type of parallel systems, as well as develop new paradigms and tools for
efficient application programming [9][10][11].

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 72

1.1 Multi-core cluster

A multi-core processor is formed by the integration of two or more
computational cores within the same chip [12]. The reasons for their
development are based on the energy consumption and heat generation
problems that appear when the speed of a processor is escalated.
A multi-core processor increases the yield of an application by dividing the
computation work among the available cores [13].
A cluster is a parallel processing system formed by a set of computers
interconnected over some kind of network and that cooperate as if they were
an “only and integrated” resource, regardless of the physical distribution of its
components. Each “processor” may have different hardware and operating
system, and it can even be a “multiprocessor” [14].

1.2 Study application

One of the areas of greatest interest and growth in the last few years within
the field of parallel processing is that of the treatment of large volumes of
data such as DNA sequences. The extensive comparison processing required
for the analysis of genetic patterns demands a significant effort in the
development of efficient parallel algorithms [15].
The center for all bioinformatic operations and analyses is partly held by
Sequence Alignment, both for pattern searching among amino acid and
nucleotide sequences, and for the search of phylogenetic relationships among
organisms. The Smith-Waterman algorithm for local alignment is one of these
methods; it focuses on similar regions only in part of the sequences, which
means that the purpose of the algorithm is finding small, locally similar
regions. This method has been used as the basis for many subsequent
algorithms and is oftentimes used as basic pattern to compare different
alignment techniques. If the length of the sequences involved are N and M,
the complexity of the algorithm is O(NxM). Thus, the problem is escalated as
the square of sequence size [16].
Taking into account that sequences can have up to 109 nucleotides each, the
time and memory required to solve this problem in a sequential manner is
impracticable. This leads to the parallelization of the algorithm over powerful
parallel architectures.

1.3 DNA Sequence Comparison on a Multi-core Cluster

Taking into account the increase in use of the multi-core cluster architecture,
it is important to study new parallel algorithm programming techniques that
efficiently exploit the power of the architecture by combining shared memory
and message passing.
In particular, the approach of the application to study is attractive due to its
complexity and the possibility of breaking down parallel algorithm

COMPUTER SCIENCE & TECHNOLOGY SERIES 73

concurrency into “blocks” of different dimensions, which allows an optimal
adaptation of the application to the multi-core cluster support architecture.
The architecture used in this paper is a Blade with 8 blades. Each blade has 2
quad core Intel Xeon e5405 2.0 GHz processors; 2 Gb of RAM memory
(shared between both processors); and 2 X 6Mb L2 cache for each pair of
cores [17][18]. This architecture allows a comprehensive analysis of the three
approaches (messages, shared memory, and hybrid).
In Section 2, the Smith-Waterman algorithm is explained, together with the
sequential and the parallel solutions used in this paper. In Section 3, the
experimental work carried out is described, whereas in Section 4, the results
obtained are presented and analyzed. Section 5 presents the conclusions and
future lines of work in relation to this paper.

2. Smith-Waterman Algorithm Definition

This method allows aligning two DNA sequences by inserting gaps (if
necessary) that are used to detect locally similar regions that may indicate the
presence of a relation between both sequences, which is done by assigning a
similarity score. If gaps are inserted, that is, certain elements of the sequences
are not aligned to achieve a better overall alignment, a penalization is applied.
The algorithm calculates a similarity score between two sequences and then,
if necessary, employs a backwards alignment process for an optimal result
[14].
The following paragraphs explain the operation of the algorithm to find a
similarity score between two DNA sequences.
Given two sequences: A = a1a2a3…aM and B = b1b2b3…bN, a matrix H of
(N+1)x(M+1) is built, in such a way that the nucleotide bases that form
sequence A label the rows (starting with 1), and those from sequence B label
the columns (starting with 1). The following steps are applied to calculate the
values of H that will yield the similarity score between A and B:

a. Start row 0 and column 0 of H with 0, as indicated in Equation 1.

MjNiHH ji  0and0for000 (1)

b. Calculate the value of Hij i  [1,.., N] and j  [1,..,M] by means
of Equation 2. This value indicates the maximum similarity between two
segments ending in ai and bj, respectively.












 

ji

ji

jiji
ji

F
C

baVH
H

),(
0

max 1,1 (2)

 V(ai, bj) is the matching function that indicates the score obtained
for matching ai with bj. It is based on a table of values called
substitution matrix that describes the probability of a nucleotide

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 74

base from sequence A at position i to occur in sequence B at
position j. The most common matrix is the one that rewards with
a positive value when ai and bj are identical, and punishes with a
negative value otherwise.

 Cij is the score in column j considering a gap, and is calculated
with Equation 3.

)}({max ,1 kgHC jkiikji   (3)

 Rij is the score in row i considering a gap, and is calculated with
Equation 4.

)}({max ,1 lgHR ljijlji   (4)

 g(x) is the penalization function for a gap of length x, and is
obtained with Equation 5, q being the penalization applied for
opening a gap and e the penalization for prolonging it.

)0;0()( eqxrqxg (5)

c. The similarity score is obtained as shown in Equation 6.
}{max)0)(0(jiMjNi HG  (6)

d. Based on the position in matrix H where the value G was found
(representing the end of the highest-scoring alignment between both
sequences), a backwards process is performed to obtain the pair of
segments with maximum similarity, until a position whose value is 0 is
reached, this being the starting point of the segment.

2.1 Sequential Solution of Smith-Waterman Algorithm

In this section, the sequential solution of Smith-Waterman algorithm is
analyzed with the purpose of determining the similarity score between two
DNA sequences. This means that the backwards process is not taken into
account when obtaining the segment that represents the optimal alignment
(step d of the algorithm explained in the previous section is not performed).

 Sequence A

 Hd C
ij

(g
ap

)

Rij (gap) Hij Se
qu

en
ce

 B

Fig. 1. Data dependency scheme

COMPUTER SCIENCE & TECHNOLOGY SERIES 75

Figure 1 shows the data dependency that exists for calculating matrix values.
To obtain Hi,j, the result of Hi-1,j-1 (Hd in Figure 1) is required, and the score
must be known when considering a gap in row i and another one in column j.
This restriction allows calculating H values from top to bottom and left to
right (H11, H12, H13, …H21, H22, H23, …..).
Taking into account that step d of the algorithm is not carried out, matrix H
does not have to be stored in full, all that is needed is:

 A vector h of length M+1 that at each position keeps the value
obtained in the last processed row over that column. Equation 7 shows
the values for h corresponding to the example shown in Figure 1.












 1
1

,1

,

jkH
jkH

h
ki

ki
k (7)

 An element e to temporarily store the last value calculated in the row
that is being processed. In Figure 1, e = Hi,j-1.
 A vector c of length M+1 that at each position keeps the maximum
score considering a gap in that column. Equation 8 shows the values
for c corresponding to the example shown in Figure 1.









 jkC

jkC
c

ki

ik
k

,1
 (8)

 An element r that keeps the maximum score considering a gap in the
row that is being processed. In the example shown in Figure 1, r = Ri, j-1.

2.2 General Parallel Solution of Smith-Waterman Algorithm

Due to the dependency of data mentioned in the previous section, the problem
needs to be solved by following a pipeline scheme, where stages S perform
the same work over various consecutive nucleotide subsets of the first
sequence (A in Figure 1). In each cycle, stage si (for i  [1, S-1]) receives a
data block from si-1, solves part of its work, and then sends these results to si+1
(except for the last stage which does not need to send its results to any other
stage). The first stage (s0) only performs its work by sending partial results
(corresponding to a block) to its successor.
An important aspect of this solution is selecting the number of elements (BS)
from sequence B that form the data blocks that are sent from one process to
another, taking into account that:

 Pipeline parallelism is exploited to its maximum capacity only after
S-1 cycles have been processed. That is, when all stages have received
work to do. The larger the BS, the longer the time required to fill the
pipe, and therefore, the lower its exploitation. From this point of view,
BS should tend to 1.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 76

 If the size of BS is very small, the stages spend more time
communicating partial results than actually processing information.
From this point of view, BS should tend to N.

A suitable block size should be found, so that data communication and data
processing can be done simultaneously. The optimal size does not only
depend on the architecture used, but also on the communication model
implemented.

2.2.1 Message Passing as Communication Model

In this case, each pipeline stage is carried out by a different process pi (for i 
[0, S-1]), and partial results are communicated by sending messages between
consecutive processes. The first sequence (A in Figure 1) is distributed by p0
among the S processes that form the pipeline.

2.2.2 Shared Memory as Communication Model

In this case, each pipeline stage is carried out by a different thread ti (for i 
[0, S-1]). Instead of communicating partial results through message passing,
these are kept in the shared memory as a single structure (as in the sequential
algorithm). Consecutive threads are synchronized to indicate that work with a
new data block can begin.

2.3 Hybrid Parallelization of the Algorithm by Integrating Message
Passing and Shared Memory

When using a hybrid architecture, the different memory levels (among cores
in a same blade) and the interconnecting network (among cores in different
blades) should be considered to determine the optimal size BS. This leads to a
solution that combines the use of message passing with shared memory.
This hybrid solution is based on the use of a pipeline of P stages as the one
described in Section 2.2.1, each of these stages using a pipeline of T phases as
the one detailed in Section 2.2.2.
When each process pi begins (for i  [0, P-1]), it generates T-1 threads to
jointly solve the data blocks corresponding to the different cycles. Thus, there
are PxT threads (all P processes plus all T-1 threads generated by each of
them), which means that the set of nucleotides from the first sequence (A in
Figure 1) is equally distributed among PxT threads.
When process pi (for i  [0, P-1]) needs to solve a data block (with BSmp
elements), it divides it in sub-blocks of BSsm nucleotides each to be solved by
the pipeline corresponding to that process. To take advantage of the features
of the architecture, the optimal BSmp and BSsm values have to be determined
for each case.

COMPUTER SCIENCE & TECHNOLOGY SERIES 77

3. Experimental Work

In this paper, language C is used with OpenMPI and/or Pthreads libraries to
handle message passing and threads, respectively.
As mentioned in the Section 1, a Blade with 8 blades, each with two 2.0 GHz
quad core Intel Xeon e5405 processors, was used. Each blade has 2 Gb RAM
memory (shared between both processors) and 2 x 6Mb L2 cache for each
pair of cores.
Two types of tests were carried out:

 Using one blade of the Blade. Testing in this case purely parallel
algorithms to determine suitable data block sizes.
 Using the entire architecture. Testing in this case the hybrid
algorithm and the one that uses only message passing to compare both
behaviors.

3.1 Tests with a single blade of the Blade

Tests were carried out on a single blade of the Blade (using the 8 cores) to
analyze the behavior of the purely parallel algorithms described in Sections
2.2.1 and 2.2.2.
The tests carried out vary in sequence length (N = 65536, 131072, 262144,
524288, 1048576) and block size (BS = 8, 16, 32, 64, 128, 256, 512, 1024,
2048).
As a result of these tests, it was observed that the efficiency achieved by the
algorithm that uses shared memory is slightly higher than the efficiency of the
solution that uses message passing. This leads to the proposal of the hybrid
algorithm described in Section 2.3 to fully exploit the architecture.
Also, the results obtained allowed determining the ideal values for BSsm = 16
and BSmp =128. Detailed results can be found in [19].

3.2 Tests with the entire architecture

In order to analyze the behavior of the hybrid algorithm, it is compared with
the algorithm that uses message passing only, using the 8 cores with different
numbers of blades (4 or 8). The same as in Section 3.1, sequence length
varies (N = 65536, 131072, 262144, 524288). In the following paragraphs,
the tests carried out are described.

 MP: the algorithm that uses only message passing is used with
various block sizes (BS = 128, 256, 512, 1024, 2048).
 HY: the hybrid algorithm is used with a process pi and 3 threads for
each processor in each blade. That is, each shared memory pipeline
uses an entire quad core processor. The value of BSsm remains
unchanged during the tests, and the size of the blocks in the message
passing pipeline varies (BSmp = 128, 256, 512, 1024, 2048).

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 78

4. Results

To assess the behavior of the algorithms developed when escalating the
problem and/or the architecture, efficiency is analyzed (in this case, on
homogeneous architectures, since all cores are equal) [1][2][20]. Equation 9
indicates how to calculate this metric, where p is the total number of cores
used.

p
SpeedupEfficiency  (9)

Figure 2 shows the efficiency achieved by the algorithms MP and HY detailed
in Section 3.2 for the most significant block sizes (BSmp = 128, 512 and 2048).
For readability, only the results obtained when using all 8 blades of the
architecture are shown, since when using only 4, a similar behavior is
observed, with a slight increase in efficiency.

Fig. 2. Efficiency achieved by the algorithms MP and HY for different BSmp and N

values, using 64 cores (8 cores in 8 blades)

This chart shows that both algorithms increase their efficiency when the size
of the problem increases (sequence length). On the other hand, these results
confirm that, for algorithm MP, the ideal block size is 128. The hybrid
algorithm (HY), however, tends to improve its efficiency when the size of the
blocks increases, so that when comparing both algorithms using a block size
of 2048, HY achieves a better efficiency.
Figure 3 presents a summary of the best efficiency achieved by each of the
algorithms (MP and HY) when using 4 and 8 blades of the architecture. In the
case of algorithm MP (MP-4 and MP-8 for 4 and 8 blades, respectively), it is
achieved with a block size BS = 128. For HY, it is achieved when using BSmp
= 2048.

COMPUTER SCIENCE & TECHNOLOGY SERIES 79

This chart shows that algorithm MP achieves a greater efficiency than the
hybrid algorithm, and that the difference decreases as the size of the problem
increases. On the other hand, as it is to be expected in most parallel systems,
efficiency decreases when the number of cores used increases.
This figure also shows that when the total number of cores used increases, so
does the difference between the efficiency achieved by MP and HY.
Inversely, when the size of the problem increases, the gap decreases.

Fig. 3. Summary of the best efficiency achieved by each of the algorithms with 4 and

8 blades of the architecture

5. Conclusions and Future Works

In this paper, the Smith-Waterman algorithm is parallelized for the alignment
of DNA sequences by means of a pipeline scheme due to the dependency of
data that is inherent to the problem. The architecture used for the experiments
is a multi-core cluster (8 blades with 8 cores each).
Given the characteristics of the architecture, the pipeline was initially
implemented with two different communication models: message passing
(MP) and shared memory (SM). The efficiency of both algorithms was
compared when using a single blade of the architecture and a slight advantage
of SM in relation to MP was observed.
Since the SM algorithm could not be used in the entire architecture (because
there was no memory shared among the various blades), a third option was
implemented (HY) using a hybrid communication model that combines
message passing and shared memory. This version has a pipeline scheme
among processes that communicate thorough message passing, and within
each stage there is a shared memory pipeline to solve each data block.

XVI ARGENTINE CONGRESS OF COMPUTER SCIENCE 80

The behavior of this algorithm was compared with that of MP using 4 and 8
full blades of the architecture. As a result, it was observed that MP achieves a
greater efficiency than HY. This is because the optimal block size for MP (BS
= 128) cannot be used in HY (BSmp >> 128) pipeline because it would not be
possible to generate enough sub-blocks to run the internal shared memory
pipeline efficiently with its optimal block size (BSsm = 16).
A future line of R&D is the analysis and optimization of hybrid solutions for
certain types of problems, especially for those that support a composite
parallel solution (combining more than one paradigm). On the other hand, the
scalability of the problem discussed, while ensuring a certain efficiency level,
is also of interest.

References

1. Grama, A., Gupta, A., Karypis, G., Kumar, V. (2003). “An Introduction to
Parallel Computing. Design and Analysis of Algorithms. 2nd Edition”.
Pearson Addison Wesley.

2. Jordan, H, Alaghband, G. (2002). “Fundamentals of parallel computing”.
Prentice Hall.

3. Dongarra, J., Foster, I., Fox, G., Gropp, W., Kennedy, K., Torczon, L.,
White, A. (2003). “The Sourcebook of Parallel Computing”. Morgan
Kauffman Publishers. Elsevier Science.

4. Juhasz Z., Kacsuk P., Kranzlmuller D. (editors) (2004). “Distributed and
Parallel Systems: Cluster and Grid Computing”. Springer; First Edition.

5. Di Stefano, M. (2005). “Distributed data management for Grid
Computing”. John Wiley & Sons Inc.

6. Miller, M. (2008). “Cloud Computing: Web-Based applications that
change the way you work and collaborate online”. QUE Publishing.

7. Mc Cool, M. (2007). “Programming models for scalable multicore
programming”. http://www.hpcwire.com/features/17902939.html

8. Chai, L., Gao, Q., Panda, D. K. (2007). “Understanding the impact of
multi-core architecture in cluster computing: A case study with Intel Dual-
Core System”. IEEE International Symposium on Cluster Computing and
the Grid 2007 (CCGRID 2007), 471-478.

9. De Giusti, L., Chichizola, F., Naiouf, M., De Giusti, A., Luque, E. (2010).
“Automatic Mapping Tasks to Cores - Evaluating AMTHA Algorithm in
Multicore Architectures”. IJCSI International Journal of Computer
Science Issues, Vol. 7, Issue 2, No 1. 2010.

10. Olszewski, M., Ansel, J., Amarasinghe, S. (2009). “Kendo: Efficient
Determistic Multithreading in Software”. Architectural Support for
Programming Languages and Operating Systems (ASPLOS ‘09).

11. Bertogna, M., Grosclaude, E., Naiouf, M., De Giusti, A., Luque, E.
(2008). “Dynamic on Demand Virtual Clusters in Grids”. 3rd Workshop
on Virtualization in High-Performance Cluster and Grid Computing
(VHPC 08). Spain.

COMPUTER SCIENCE & TECHNOLOGY SERIES 81

12. AMD, “Evolución de la tecnología de múltiple núcleo”. 2009.
http://multicore.amd.com/es-ES/AMD-Multi-Core/resources/Technology-
Evolution.

13. Burger T. W., “Intel Multi-Core Processors: Quick Reference Guide”.
http://cachewww.intel.com/cd/00/00/23/19/231912_231912.pdf

14. Grid Computing and Distributed Systems (GRIDS) Laboratory-Department
of Computer Science and Software Engineering (University of Melbourne),
“Cluster and Grid Computing”. 2007. http://www.cs.mu.oz.au/678/.

15. Attwood, T. K., Parry-Smith, D. J. (2002). “Introducción a la
Bioinformática”. Pearson Educación S.A.

16. Zhang, F., Qiao, X., Liu, Z. (2002). “A Parallel Smith-Waterman
Algorithm Based on Divide and Conquer”. Proceeding of the Fifth
International Conference on Algorithms and Architecture for Parallel
Processing. HP, “HP BladeSystem”. http://h18004.www1.hp.com/products/
blades/components/c-class.html.

17. HP, “HP BladeSystem c-Class architecture”. http://h20000.www2.hp.com/
bc/docs/support/SupportManual/c00810839/c00810839.pdf.

18. Rucci, Enzo (2010). “Modelos de Comunicación en BLADE”. III-LIDI
Technical Report.

19. Leopold, C. (2001). “Parallel and Distributed Computing. A survey of
Models, Paradigms, and Approaches”. Wiley, New York.

