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Singular value estimates of oblique projections
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1. Introduction

Given a Hilbert space Jf. consider a decomposition of fifi' as a direct sum of two subspaces 
= y/-' © //!, and consider the oblique projection associated to this decomposition denoted
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Abstract

Let if'~ and . // be two finite dimensional subspaces of a Hilbert space zZ such that = // '® 
and let Pit. y zzi denote the oblique projection with range // ' and nullspace .//A In this article we get the 
following formula for the singular values of P/z || zz±:

//J-) - U = min s/fiF-Hr.
11 (F.H)eX(it ..//)

where the minimum is taken over the set of all operator pairs (F, H) on // such that R(F) — ii\ R(H) = .// 
and FH* = P.,, | z,.. and k e {1.......dim 7/'}. We also characterize all the pairs where the minimum is
attained.
© 2008 Elsevier Inc. All rights reserved.
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by P-n /, ■ If L(Jf) denote the algebra of bounded operators on Jf, let Xi H . Ji) be the subset 
of x L(^) defined by

.V< // . ._//) := {(F, II. : R(F) = VJ IP. II . = Ji and /// = zz±}.

In [2], it is proved that min ||F — H J2 exists and it is equal to 2(||P#n zz± || — 1), where the 
minimum is taken over all pairs (F, H) e X( if._ //) (the notation used there for this set was Xg, 
where Q = P#n zz±). There are many minimizing pairs, and some of them have been determined. 
The present paper is devoted to a similar problem, this time for singular values instead of the 
operator norm. More precisely, if if" (and therefore . //) has a finite dimension, say n, then we 
prove that

mins^F - !li = - D (!)

lor A' e {1,2........n], and we find all minimizing pairs (F, //). These results, which are obvious if
// Ji because in this case P# || zz± is the orthogonal projection onto #', (P# || zz±, P# || zz±) e 
X(if',. //) and therefore both members of (1) vanish, are not evident in the oblique case.

The paper is organized as follows: Section 2 contains preliminaries and a description of the 
tools needed for the proofs: an operator version of the arithmetic-geometric inequality, some 
2x2 matrix computations and elementary facts about singular values. In Section 3, we state the 
main results of this paper. Section 4 is devoted to the proof of the results stated in the previous 
section.

1.1. Motivation of the problem

The results of this paper have a direct translation to frame theory and sampling formulae, 
and they have been motivated by practical problems that appear in those areas. Let PVT be the 
subspace of all f e L2(R) whose Fourier transform has support contained in the interval [—tt, tr]. 
Then, the classical Shannon ( or Whittaker-Kotelnikov-Shannon, WKS) formula

f(x) = E /(n)sinc(v — n), f e PW

is one of the first examples of sampling formulae, frequently used in sampling theory and sig­
nal processing. The facts that s„{x) = sinc(v — n) form an orthonormal basis of PW and that 
f(n) = (f, s„), first noticed by Hardy [14], show that

Pf = YM’

is the orthogonal projection onto PW, and is one of the obvious factorizations we mentioned 
above. In the survey by Unser [25] the reader can find historical notices and applications of the 
WKS formula, as well as a projection-based view of some sampling problems. Indeed, in modern 
sampling theory, factorizations of projections appear frequently. In fact, if if is a subspace of a 
space Jf of functions defined on a set X, a sampling formula is a collection of expansions like

/U) = ^/(i„)/„U), feJ,

where [t„ }„s is a sequence in X and {/„} is a sequence in such that the expansions converge in 
a certain topology on Jf. If is a reproducing kernel Hilbert space, each evaluation functional, 
a fortiori the evaluations at t„, is bounded and by Riesz representation theorem there exists a 
sequence [//„}„£■ in such that the sampling formula above becomes
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It turns out that, under reasonable hypothesis on {/„}„sand the expansion converges,
not only for elements of but also for every f e Jf, to an element of ¿P. Thus

defines a bounded linear projection on rf with image ¿f. Moreover, if {enUgw is the canon­
ical basis of f2, then Fe„ = f„ and He„ = h„ define bounded operators F, H : f2 — and 
Q = FH*; {/„}„6n is called the sequence of reconstruction vectors and {/z„}„eN that of sampling 
vectors.

The study of these type of factorizations as well as estimation for the norm of oblique projections 
are very useful to study different problems in modern harmonic analysis. For instance it has been 
used to study the biorthogonality of two multiresolution analyses , problems on perturbation of 
frames , and problems concerning sampling theory (see for example [16-18,8,19-21,26,7,3,9] 
and the references cited therein).

2. Preliminaries

Given a separable Hilbert space , L(J'F) denotes the algebra of bounded linear operators 
on Jf, and the ideal of operators with finite dimensional range. Given A e L(^), R{A)
denotes the range or image of A, N(A) the nullspace of A, a (A) the spectrum of A, A* the adjoint 
of A, |A| = (A* A)1/2 the absolute value of A, ||A || the spectral norm of A.

If = H" ® //_L then the projection onto 7/' defined by this decomposition is denoted by 
II „ . Observe that P* „\\-ii ■ In the case of orthogonal projections, i.e., if" =

we write P-g. ■ instead of 1\, ;. .
Given A e Lf (Jf), si(A), 52(A),... denote the singular values of A arranged in non-increas­

ing order, tr( A) the trace of A and ||A||p the Frobenius norm of A. Recall that ||A||p = tr(A*A) = 
J2^(A)2.

Remark 2.1. Throughout this paper we consider infinite and finite dimensional Hilbert spaces. 
In the first case, the sub-indexes of the singular values run over all the positive integers, while in 
the second case they belong to the set {1........dim

The following well-known operator version of the arithmetic-geometric inequality (see [5,1, 
10]) is a key result in what follows:

Proposition 2.2. Given C, D e L(^), then

licr>*i| < |C|2 + |D|2
2

IfC,D eLfW), then

and the equality for every k holds if and only if |C |2 = | D |2.

We end this preliminary section by recalling some basic facts on generalized inverses. The reader 
is referred to the books by Nashed [23], and Ben-Israel and Greville [6] for more information.
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Definition 2.3. Let A e Lfif). A generalized inverse of A is an operator B e L(J'T) such that 
ABA = A and BAB = B.

It is a well-known fact that A has a (bounded) generalized inverse if and only if R (A) is closed. 
In that case, the next proposition relates generalized inverses with oblique projections.

Proposition 2.4. Let A e L(Jf) be a closed range operator

(1) If B e L(^) is a generalized inverse of A, then'.
• AB is an oblique projection onto R(A).
• BA is an oblique projection whose nullspace is N( A).

(2) Given a pair of projections Q, Q e L(^) such that R(Q) = R(A) and N(Q) = N(A), 
there is a unique generalized inverse B of A such that AB = Q and BA = Q. In par­
ticular the unique one associated to the orthogonal projections Pr(A) and P^ha)1- /s 
called Moore-Penrose generalized inverse and it is denoted by A\ In terms o/A‘. the 
unique generalized inverse associated to the pair (Q, Q) can be written in the following 
wav:

B = QA^Q.

3. Statements

In this section we state the main result of this paper, postponing its proof until the next section. 
Given two closed subspaces 77 and . of a Hilbert space such that = 7/ ® //■*■, recall 
that A'( 7/ Ji) denotes the subset of L(^) x L(^) defined by

I A.,//) := {(F, H) : R(F) = YZ', R(H) = Ji and /// = P.^, z/±}.

Note that the pair (P^^v, P*v±) = ( ) always belongs to this set, hence it is
non-empty.

Theorem 3.1. Let if " and Ji be finite dimensional subspaces of a Hilbert space Jf such that 
je = YZ'® JA Then for (F, II, e X < 7/ .,//)

[0 ifk> n,

wheren = dim 77 i dim Ji)andk < dim or k e N//'dim# = oa. Moreover, given Fq with 
R{Fq) = It", iflh] = (Fj P#-|| z/±)* then (Fo, IIj'i e .V < 7/ . Ji), and the equality for every k e N 
is attained precisely at those pairs (Fq, Hq) that also satisfy FqFq = | P * = |PZ/||#±|.

Remark 3.2. Note that, one of the consequences of Theorem 3.1 is the following identity:

2(ll^||^l|-l)= mm \\F — H ||2. (3)
11 (F,77)eX(#',.Z/)

As we mentioned in the introduction, this identity has been proved in [2], not only for finite 
dimensional spaces but also for for infinite dimensional closed subspaces. However, a complete 
characterization of the pairs (F, H) e X( YZ',..//) where the minimum is attained in (3) is still
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unknown. If we only look for minimizers for the spectral norm, besides the pairs (Fo, Ho) such 
that F0F* = IP.*-!!//±| = IP//||#-±I and Ho = there may be more.

Remark 3.3. Theorem 3.1 can be restated in terms of the so-called principal angles between 
subspaces. Recall that, given two (non-trivial) finitedimensional subspaces //and of a Hilbert 
space the principal angles between if" and, // are defined as the values 9k in [0, tt/2] whose cosines 
are the nonzero singular values of (see [22,11,12,27]). If in addition .Jf = if" ® .fp, as
in Theorem 3.1, then P.zz n zz± = (Pj/PuP■ Indeed, as = if" ® .lP, we get

= .11 and A’> = if".

On the other hand,

(P//P#')P#-||.//± — — P.//’

= Fíi'\\jCP'>i" = P"

and therefore P.zz n zz± = (Pj/PuP as we claimed (see also [13]). This implies that the non zero 
singular values of Pw . zz are the secant of the principal angles between if" and .11. Therefore, 
formulae (2) can be rewritten in terms ofprincipal angles as follows: for every (F, H) e ./(,//,..!’) 
and every k e {1........dim if "}:

cos (6/) >
2

2®í„_Á.+i(F -T/)2’

The following estimate of the trace norm of an oblique projection can be also obtained as a 
consequence of Theorem 3.1:

Corollary 3.4. Let if" and .11 be finite dimensional subspaces of a Hilbert space ÿf such that 
= if" ® . lP. Then, for every pair (F, H) e ,T( if", .11}

2/7 + IIF — 77||2
ll^>#'||.//±lli ? 2 ’

where n = dim if " = dim .11.

4. Proof of the main result

Let/ : [0, ®oo) —► [0, ®oo)be the function defined by/(v) = v + where/? > 0. Asimple 
analysis of this function shows that it attains a global minimum at v = pb and f(pb) = 2pb. 
The first step towards a proof of Theorem 3.1 is an extension of this result to operators on Hilbert 
spaces. The proof of this generalization is a simple consequence of the arithmetic-geometric 
inequality stated in Proposition 2.2:

Proposition 4.1. Let B e L(.iF) be a positive and invertible operator. Then, for every positive 
invertible operator A e L(.iF) it holds that

2||P1/2|| < ||A® A“1/2PA“1/2||. (4)

//dim# = n < oo, then
2sk(B1/2) < sk(A + A“1/2PA“1/2) \k e [1......... n}.

Moreover, the equality for all k e {1........n} holds if and only if A = lP".
(5)
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Proof. Use the arithmetic-geometric inequality (Proposition 2.2) with C = /\l,/2 and D = 
BiaA-ia □

In order to prove Theorem 3.1, we also need the following lemmas:

Lemma 4.2. Let J" and .Ji be two closed subspaces of a Hilbert space such that = ii" ® 
Ji\ and let (F, H) e Xi 7/ . -_//). Then F H* and H*F are projections with R(F H*) = R(F) 
and N(H*F) = N(F) such that

H* = H*FFAH*. (6)

Proof. Sinceby assumption F H* = zz±andP(F) = YZF H* is a projection and R (FH*) = 
R(F).

As R(H) = .H = A(P# || ^x)2-, then N(H*) = JP. On the other hand,

R(1 - FHf) = = jA

So, we can conclude that H*(I — FH*) = 0, that is, H* = H*FH*. In particular this proves 
that H*F is a projection because

(H*F)2 = H*FH*F = H*F.

Moreover, since R{F) = iF and N(H*) = .iA, by assumption R{F) Cl N(H) = {0}. This im­
plies that N(H*F) = N(F).

Finally, as FF^F = F (Proposition 2.4) we obtain

H*FF^FH* = H*FH* = H*.

which concludes the proof. □

Lemma 4.3. Let ii" and Ji be two closed subspaces of a Hilbert space such that = 
J"®. iA and let t F. II e 1«. . J). Then

|(F-(F:P^x)*)*|2< |(F-//)*|2 (7)

Proof. By Lemma 4.2, H* = QF' P,g-^ j{l where Q = H*F is an oblique projection such that 
N(Q) = N(F). So, we obtain that

|(F - H)*|2 = FF* + HH* - (P^^x + P^±)

= FF* + ^x(^)*2*2Ftp^ - (P^^x + P^±f

Consider the matrix representation of Q with respect to the decomposition JP = A(F)-1- ® N(F)

In this representation, the (1,2)- and (2,2)-entries are zero because N(Q) = N(F). On the other 
side, since FH* = P# || zzx and R(F) = J", it holds that FH*FF* = FF*, or equivalently

(H*FF*x, F*y) = (F*x, F*y)

for every v, v e JJ. This shows that the (l,l)-entry is I. Using the above matrix representation 
of Q we obtain that
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/I XA G /l+v*v 0\ /I 0\CC (o 0 ) (x 0 0)^(0 o)~PN(F)x- (8)

Thus, as R(F^) = N(F)\ we have

|(F - 77)*|2 > FF* + P^AFWP^ - (P^x + P^f

= |(F-(F^P^x)*)*|2,

which proves the lemma. □

Corollary 4.4. Let F, H and Pv |, as in Theorem 3.1. Then

sk(F - (F'Pv n sk(F - H) Yk (9)

and the equality for every k holds if and only if H = (F^ P.zz || zz± )*.

Proof. Using the so-called minimax principle for singular values (see [24,4, p. 75]) and Lemma 
4.3, we get for every k e N

^((F-(FtP^||^±)*)*)2= max min (|(F - (F^^x)*)* |2^, x)
" ycjf.dim^ =kie/ ,||.r||=l "

< max min (\(F — H)*\2x, x)
ff'Qmy dim .F'=k .re^, ||.v ||=1

= ^((F - 77)*)2

and inequality (9) follows by taking square roots and using that sk((F — 77)*) = sk(F — //) 
and sk((F - (F' P#-||zZZx)*)*) = sk(F - (F1 P#-||zZZx)*) for every k e N. In order to prove the 
uniqueness part, suppose that the equality in (9) holds for every k. Then

oo
tr(|(F-77)*|2) = J2^(F-77)2

k=l
oo

= £^(F-(Ftp^x)*)2
k=l

= tr(|(F-(F^^x)*)*|2).

Expanding the absolute values inside both traces and using the linearity of the trace we obtain 

^P^AF^Q'QF'P^x) =

Since P(FTP#n Z/±) = (V(F)1 and Q* Q Pw(F)x, this equality implies that Q*Q = Pn(F)x, 
which holds if and only if Q = PN^F)±. □

Proof (Proof of TheoremS.l). Let F e L(J^) such that R(F> = # 'and let H := (F^P#n zz±)*. 
To show that (F, 77) e Xi U . we have to prove the relations

P(77) = ,// and III = P.^, z/±.

Since by definition

R(77) = 7V(77*)± = N(F^P^jexA
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and F is injective on R(F) = zz±), we can conclude

R(H) = = (^±)± =

Next, as FF^ = Pr(F) and P(P#.||_ZZ±) = R(F) = if', one has

FH* = FF  ̂P^^l =
proving the relations. Therefore (F, H) e Xi U . Jf). Moreover, by Corollary 4.4 it is enough 
to prove the theorem for the pairs (F, 77) so that R(F) = 7/ ' and 77 = (F^ P.^ zz±)*. Thus, let 
(F, 77) be one of such pairs. The decomposition .ff = if' ® #'"L induces the following 2x2 
matrix representation of Pif^ J{x and FF*:

^ = (J ;). rf = (o o)-

where a : if' — if' is invertible because R{F) = if'. Note that, as the projection F# || zz± is 
fixed, the operator v is also fixed.

Since FF1 P^^x = P^w^1

F^P^ = P^ = (j and (LyL = (FF*)1 =

Therefore

= FF* _ (pptp^^)* _ ffA^x +

= ff* -
= (a ° v (2

0 J

/ a + «_1 — 2
= U*^“1 - 1)

_ 7a-l/2_al/2 
x*a~V2

This implies

= Sk

= Xk

= Sk

((
((
((

A

a-^xX
I

Therefore, it holds that
if 1 < k < n, 
if k > n. (10)



394 J. Antezana, G. Corach / Linear Algebra and its Applications 430 (2009) 386-395

Since dim if " = n < oo, we can use Proposition 4.1 and get for every k e {1........//j

sk(F - (F1 |r//. )*)2 = sk(a +«-1/2(l + vv*)«-1/2) - 2

> 2^((1 W)1/2) -2 = 2^((P^||^±/’* .|1 )1/2) -2

= — 1),

which concludes the proof of (2). On the other side, the equality holds for every k e {1........//j if
and only if sk(a + «_1/2(1 + xx*)«-1/2) = 2s^((l + aw*)1/2). So, by Proposition 4.1, itholds if 
and only if« = (1 + aw*)1/2, which is equivalent to FF* = |F*u //±| = |PZ/||#±|. The equality 
for k > n follows from (10). This completes the proof. □
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