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Abstract: We consider non(anti)commutative (NAC) deformations of d = 1 N = 2 
superspace. We find that, in the chiral base, the deformation preserves only a half of the 
original (linearly realized) supercharge algebra, as it usually happens in NAC field theories. 
We obtain in terms of a real supermultiplet a closed expression for a deformed Quantum 
Mechanics Lagrangian in which the original superpotential is smeared, similarly to what 
happens for the two dimensional deformed sigma model. Quite unexpectedly, we find that 
a second conserved charge can be constructed which leads to a nonlinear field realization 
of the supersymmetry algebra, so that finally the deformed theory has as many conserved 
supercharges as the undeformed one. The quantum behavior of these supercharges is 
analyzed.
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1. Introduction

New aspects of supersymmetric field theories have been recently analyzed by deforming 
superspace so that both bosonic and fermionic coordinates obey non-trivial commutation 
and anticommutation relations. Such deformed superspaces, first proposed in [l]-[8], are 
known as non(anti)commutative (NAC) superspaces and they have recently attracted much 
attention both in connection with string theory [9]-[14] and also with field theories, like 
in studies of modified BPS solutions, anomalies and condensates in SUSY gluodynamics, 
etc [15]-[18].

Supersymmetric Quantum Mechanics (SUSY QM) [19]—[20] provides a simple and, at 
the same time, quite adequate framework for understanding SUSY breaking non-pertur- 
batively. In particular, after the introduction of the Witten index [20], many interesting 
topological aspects of SUSY QM were clarified shedding light into more involved problem of 
SUSY breaking in quantum field theory. For instance, the connection between the Witten 
index and QM yields to a beautiful derivation of the Atiyah-Singer index theorem [21]-[22], 
relevant for analysis of SUSY field theories.

In this work we study the NAC deformation of d = 1 W = 2 superspace and the pos
sibility of formulating Quantum Mechanics in such a superspace. Our purpose is twofold: 
on the one hand we intend to fill a gap in the study of NAC theories by analyzing the one 
dimensional case. We think that this is interesting by its own and for possible applications 
in condensed matter problems. On the other hand, as the study of QM is simpler than that 
of field theories, we shall use it to analyze an important issue of NAC theories, namely the 
question of how many supercharges are effectively broken by the deformation. We know 
that in NAC field theories, once the deformation is implemented, only a fraction (usually 
a half) of the original linearly realized algebra is left. Remarkably, we shall see that in



the Quantum Mechanics case a new, deformed supercharge, can be constructed (at least 
classically), which corresponds to a non-linear realization of the supersymmetry algebra. 
This implies that the deformed theory finally has as many conserved supercharges as the 
undeformed one.

The paper is organized as follows. In section II we present our definition of the NAC 
superspace and, working in the chiral base, we show that the deformation preserves only half 
of the supercharge algebra. Then, in section III we construct a deformed QM Lagrangian 
by replacing the usual product between superfields by the Moyal-Weyl product. Adapting 
results obtained in [23]-[25] for the d = 2,W = 2 NAC sigma-model, we find a d = 1 
Lagrangian which, written in components, takes the same form as the undeformed one 
but with an effective superpotential that depends not only on a scalar but also on the 
auxiliary field. We then present two charges, conserved in the deformed model, which 

lead  to a nonlinear field realization of the AT = 2 superalgebra. In section IV we study 
quantum aspects of the deformed theory. LTsing a path-integral version of the Witten 
index W we show that whenever the superpotential is such that SUSY is not broken in 
the undeformed model, W remains unchanged by the deformation and then the difference 
between the number of boson and fermion states annihilated by the supercharges can be 
determined. Section V is devoted to the formulation of the deformed theory using chiral 
supermultiplets, this avoiding the use of auxiliary fields. However, in order to preserve the 
chirality condition the class of deformation turns to be restricted in a way such that the 
resulting action coincides with the undeformed one. We present in section VI a summary 
and discussion of our results.
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2. Af = 2 deformed superspace

In the superspace formulation of supersymmetric Quantum Mechanics, apart, from the 
(commuting) real time variable r, one considers anticommuting (Grassmann) variables 0 
and its complex conjugated 0. A deformed superspace can be then defined by modifying 
the anticommutation relations among the 0 and 0 variables and even their commutation 
relations with t.

In the ordinary case, the Af = 2, d = 1 superspace R( |l2! can be parameterized by the 
coordinates

R(1'2) = (r, 0, 0), t G R, (0^ = 0. (2.1)

The most general deformation of the fermionic sector of this superspace is

{0,0} = C, {0,0} = C, {0,0} = C (2.2)

where C, C and C are c-numbers having dimensions m_1 since we take [0] = [0] = m-1/2. 
Concerning the commutation rules for the time variable with 0 and 0, we postpone the 
choice to the introduction of a “chiral” time variable (see below).

As in the case of space-time deformations, a d = 1 theory in the non(anti)commutative 
superspace defined by (2.2) can be realized using ordinary Grassmann coordinates but



multiplying superfields with an appropriate Moyal-Weyl product. Indeed, given for example 
scalar superfields of the form

<b(r, 0,0) = + 0^(r) + + 00F(t) (2-3)

with 0 a scalar, o a fermion and F an auxiliary field, one can define the Moyal-Weyl 
product which implements the deformation (2.2) as

C 7) d C *d  d Cd d C d d I ,2 ö" ö ~d d 
~2dÖdÖ~ldÖdö~ld0dÖ~ld0d0~4 : dödÖdÖdö

with c2 = CC — CC and 4>^ = (—1/^^y, where /[<b] is the Grassman character of the 
superfield 4>.

In the undeformed case, the differential operators Q and Q generating the supersym
metry transformations are given by

d - d - d d
Q u Q dö u-

and satisfy the undeformed SUSY W = 2 QM algebra

(2-5)

{Q,Q} = 0, {Q,Q} = 0, {Q,Q} = -2i^~. (2.6)

It is sometimes useful to work with the supercharges realizations

(2-7)

which can be obtained from (2.5) through the change of variables

t —> t = t — ¿(1 — b)00 (2-8)

and satisfy the familiar supersymmetry algebra when b + b = 2. Concerning the covariant 
derivatives D and D anticommuting with the supersymmetry charges, they take the form
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(2-9)

It is worthwhile to stress that we shall always consider the same formal expression 
for the Moyal-Weyl product (2.4), independently of having changed the temporal variable 
according to (2.8). This means that after the change t t, derivatives with respect to 0 
and 0 in (2.4) should be taken at fixed t.

In the deformed case, the algebra of the supercharges Q and Q changes to

{<?,<?} = -tic?-,

{Q,Q} = -i>2cF

{Q,Q} = _z(6 + 5)-- + 66C-- (2.10)
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Different, choices for b, b and the C-parameters make possible to preserve different, sectors 
of the undeformed SUSY algebra.. To select, suitable values for these parameters, it. is 
convenient, to see under which conditions the operators Q and Q still satisfy the Leibnitz 
rule. When Q and Q act. on * product, of superfields, one has

Q * (4>x * <L2) =

(Q * <bi) * 4>2 + 3>i * (Q * $2)
- d -ö$i

+ * $2) - (0-^-) * ^2 - $1 * (0-^-)]
Q * (4>x * $2) = (2.11)

(Q * $1) * 4>2 + $1 * (Q * $2)
d /7<I> 1 ôTo- ib[6g-^i * $2) - (0-^-) * <b2 - * (0-^)]

One can see that both supersymmetry generators cannot, satisfy simultaneously the Leibnitz 
rule due to the constraint, b + b = 2. From here on we shall work in the chiral base, which 
corresponds to the b = 0, b = 2 case and then, according to (2.10), only the W = | SUSY 
subalgebra, associated to the Q generator will be preserved. Let. us also note that this 
election is consistent, with

[t,6] = [t,0] =0 (2.12)

which corresponds, in terms of the original coordinates (r, 0,0), to

[t, t]=0, [t,0] =i(C0-C0), [r,0] =i(C0-C0). (2.13)

Finally, the supercharge and covariant, derivatives take the form

d d d
Q d0

d - d
de dt

d
(2.14)D = dÔ D =------.

de

3. Lagrangian and classical supersymmetries

There are two basic kinds of A/” = 2 supermultiplets in d = 1 dimension. To classify them it. 
is convenient, to introduce the notation (m, n, n — m) to identify an off-shell Ai = n, d = 1 
supermultiplet with m physical bosons, n fermions and n — m auxiliary bosonic compo
nents. Thus, the (1,2,1) supermultiplet, also known as Ai = 2a. model, is constructed 
from unconstrained real AT = 2 superfields while the (2,2,0) supermultiplet or W = 2b 
model use complex chiral superfields. In the undeformed superspace, AT = 2a. models can 
be obtained by dimensional reduction of (1,1) supersymmetric two dimensional sigma
models, while the reduction of (2,0) supersymmetric two dimensional sigma-models leads 
to Af = 2b models.

A deformed AT = 2 supersymmetric action constructed by using the (1,2,1) super
multiplet. takes the form

-|(£»*T)*(£»*T)-W*(T)]j  (3.1)
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where one defines the deformed superpotential from the function IF(<&) in the
underformed case through

IF($) y —II"'’1 $$> .0: $—>HQ($) V — (3.2)
n\ n\n=0 n=0

where the superfield <h has the component expansion (2.3),

<h(t, 0,0) = 0(t) + + 0(t)0 + 00F(t) (3.3)

In terms of the (r, 0,0) coordinates, the superfield <h is real, that is, (^(t) = ip' (t) = 
0(t) and F\t) = F(t). However, the change of variables r —> t complexifies the temporal 
coordinate and then, the reality relations for the component fields are lost.

In the two-dimensional NAC J\i = 2 sigma model context Alvarez-Gaume and Vazquez- 
Mozo found a remarkable non-perturbative formula for the deformed holomorphic super
potential [23]-[25]. Now, this formula can be also applied in this d = 1 case and allows us 
to express the higher component of the superpotential as

dOdO HQ($) = F-^ j d£ W(</> + £cF) - j * + £cF) M

with ________
c = y CC - CC. (3.5)

As noted in [23]-[25], this deformation corresponds, physically, to a smearing of the target 
space coordinates. According to this, an effective superpotential W can be obtained by 
averaging its undeformed value between <j> — cF and 0 + cF, that is

r+lIF(0,F)= I _ d£IF(0 + £cF). (3.6)

So, written in components, the deformed action for Quantum Mechanics takes the form

JHEP08 2006 
08

(3-7)

In order to study classical aspects of this deformed theory let us use the usual definition 
for the momenta, Hamiltonian and Poisson brackets

IP drC
W H = WQi - £,

where the subscripts r and I denotes right and left derivatives, respectively. Hence, with 
0 = (0,0), the conjugate momenta are n = (—zF, ¿0) and the Hamiltonian associated 
with the deformed action (3.7) is

dW 1 , -c)2W
(3.9)
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One can easily check that, the action (3.7) is still invariant under the supersymmetry gen
erated by Q

= ip, 6Qip = 0, dQip = F, 6qF = 0, (3.10)

where the variations for the fields are obtained from

5qT = Q * 3> = ^Q<P — ddqip + pQip 0 + 006qF. (3-11)

On the other hand, we have seen that the differential operator Q as defined in (2.14) and 
satisfying {Q,Q} 0, cannot be used as a generator of SUSY transformations. Besides,
the Q-variation of the component fields corresponding to the undeformed case are no more 
a symmetry of the deformed theory. That is, given the variations

%=o^ = ^> %=0V’ = 2^-F, %=o0 = O, %=0F = 2< (3.12)

the Lagrangian does not remain invariant but changes according to

. e ••• -‘Hi' • U;IL (3.13)

Then, only for c = 0 (the undeformed case) ¿q 0£ vanishes. This result was to be 
expected from the form of the deformed algebra of the supercharge (2.10) which, after 
taking b = 0, b = 2, is broken in the Q sector. This is similar to what happens in NAC field 
theories where at least half of the original supersymmetry is broken due to the deformation.

Coming back to the supersymmetry that is preserved, we can give an expression of the 
supercharge Q in terms of the fields following the Noether prescription,

(with x we denote the component fields in the theory). One can see that Q satisfies

{Q, Q}p = 0, {Q, %}p = SqX (3-15)

for the variations (3.10). One can then check that the Hamiltonian is Q-exact. since
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(3.16)

This expression suggests the existence of a second charge 
case, the deformed Hamiltonian could be written as

Q so that, as in the undeformed

H=1-{Q,Q}p. (3-17)

This can be achieved by defining the charge Q so that, 
takes the form

in terms of component fields, it

- -
2 = I*’(F Fyl (3.18)

>

p

- 6 -



Surprisingly, the charge Q is conserved,

{H, Q}p = 0

and it is also nilpotent,
{Q,Q}p = 0

(3.19)

(3.20)

We conclude that, at least classically, the deformed theory has as many supercharges 
as the undeformed one. Acting on the fields, the second charge gives the transformations

{Q,^}p = 0,

- C2ll
(3.21)

Note that in the c —> 0 limit Q —> Qc=o, as one can verify by comparing transforma
tions (3.12) and (3.21) and using component fields equations of motion. It is important 
to stress that, in contrast with the case of the transformations (3.12), which gives a linear 
realization of the supersymmetry algebra in the undeformed theory, Q provides, together 
with Q, a non-linear realization defined by eqs. (3.15),(3.21).

4. Quantum supersymmetries

To study the quantum theory, one should replace the Poisson bracket by commutators, 
{ , }p —> — ?’[, ] and write the canonical commutation relations

[<?>, n0] = z, {^,-¿^} = i. (4.1)

to describe the Hilbert space. The first relation can be represented in the standard way 
in terms of wavefunctions in L2(R). To represent the second one, which corresponds to a 
Clifford algebra, we can use the 2x2 matrices,

In order to study symmetries at the quantum level it will be more convenient to work 
with a new charge

Q+ — Q + Q (4-3)

(or equivalently with Q_ = ?'(Q — Q)) which satisfies H = (Q+)2. Note that this relation 
imposes a constraint to the possible orderings of Tt and Q+.

In order to determine whether the Q-supersymmetries are spontaneously broken in the 
deformed theory, one can analyze the Witten index. Since the Hamiltonian is the square of 
Q+, then [7Y, Q , ] = 0. Thus, except for states annihilated by Q |. a. boson/fermion pairing 
of states with the same energy takes place and the Witten index results

W = Tr [(-l)Fe-tWj = {n bosonic Y^osed states} - {fl fermionic T'** ed stetes} (4.4) 

JHEP08(2006)081
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Were Q+ an Hermitian operator, the following identity would be valid

(x I H I y) =1 Q+ IX) I2, (4-5)

and then states annihilated by Q+ would be vacuum states. As a consequence, a non van
ishing Witten index would imply that the Q+-symmetry is not broken. This is in fact, what 
happens for supersymmetric theories in undeformed superspace. Now, when the deforma
tion is present the situation radically changes: as it happens for non(anti)commutative field 
theories, the action, and hence the Hamiltonian, are in general complex. Then, according 
to (3.17), Q is not the hermitian conjugate of Q, this leading in general to non-hermitian 
charges Q±.

Now, it has been proved [26] that the Witten index can be obtained from the partition 
function Z in Euclidean time through standard manipulations,

W = I F0FII exp (- I dt (WQi - , (4.6)
JPBC \ JO J

with 0 = (</>, V’), n = (zF, —z^). Canonical variables in the Hamiltonian operator should 
be orderer so that they satisfy H - eip^(p^|7Y|^) and the functional integral is taken over 
fields satisfying periodic boundary conditions: 0(t + J) = 0(t). With this representation 

for the Witten index, its calculation can be easily performed since the deformed partition 
function coincides with the undeformed one when the Q-symmetry is not broken in the 
undeformed (c = 0) theory. To see this we should first note that the deformed action is 
Q-exact, that is,

s {«•* (i + Z-iF) }„ = s(c =” + J* (47)
As a result, we can express the partition function as

Z = y P<bexp(—S') = J Pi exp S(c = 0) — i dt — ^)j (f)^

= Z(c = 0) + ^( —l)n [dti ... I dtn x
™>o 7

Qc=o, V^(TC - W (tx) . j QC=O,$-^W - W)(tn)^ (4.8)

where { )c=o denote the expectation value corresponding to the undeformed case. Note 
that the replacement {Q, } —> {Qc=o, } can be done since the Q-transformations of the 
field components are not affected by the deformation. If Qc=o-symmet.ry is not broken in 
the undeformed case, expectation values of Qc=o-exact operators vanish. Thus we get that 
Z = Z(c = 0) and, due to relation (4.6), W = W(c = 0) when the undeformed theory is 
supersymmetric.

We can summarize the latter results as follows,

JHEP08(2006)081
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unknown in other case.
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Taking vacuum states as those for which the v.e.v. of H vanishes, the states annihilated 
by Q+ are vacuum states. Then, those cases in which W / 0 correspond to theories with 
unbroken supersymmetry.

5. The (2,2,0) supermultiplet

When one formulates the deformed theory in terms of the (2, 2, 0) supermultiplet, that is, 
by using complex chiral superfields instead of real ones, auxiliary fields are not introduced. 
It could then be promising to analyze this case since it was the presence of the auxiliary 
field which prevented a complete answer to the SUSY symmetry breaking in the case of 
the (1,2,1) multiplet.

In the chiral base, a chiral superfield 4*  and an antichiral superfield T have the com
ponent expansions

T(t,6») = z(t)+dx(t)
T(t — 2i00, 0) = z(t — 2100) + y(t)0 = z(t) + y(t)0 — 2i00z(t) (5.1)

In terms of (t, 0,0) coordinates, the component fields satisfy z\r) = z(r) and y4(r) = y(r). 
Now, in order to use these supermultiplets one needs the Moyal-Weyl product to preserve 
the superfields chirality condition. With the generic deformation (2.2), the products of 
chiral and antichiral superfields take the form

4N * U2 = TXT2

Ti * T2 = TXT2

C
— \ i \ 2

C
— \ i \ 2 + c2txl2 + ¿(70 (lxy2 - ¿2yx) + iC (lxy2 - l2yx) 0 (5.2)

One can see that a product of chiral superfield is still chiral. However, in order to preserve 
the antichirality condition, the deformation has to satisfy C = c2 = 0. Then, only the 0 
algebra gets deformed.

Let us consider a theory with the kinetic energy canonically normalized and a real 
Kähler prepotential K(z,z). The deformed action is 

S (5-3)

with the deformed prepotential defined as

(5-4)

where the square brackets [...] means all possible permutations of the superfields.
A non-perturbative expression for the deformed Kähler prepotential can be obtained 

using a generalization of ec. (3.4) for several superfields [23]-[25]. However, as in the case 
of one superfield, the deformation of the prepotential is controlled by the parameter c2, 
which in this case is zero, and then the prepotential does not receive corrections. As the 
kinetic term neither is affected by the deformation, the action (5.3) results undeformed.
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6. Summary and discussion

We have analyzed in this work NAC deformations of the d = 1 W = 2 superspace and 
studied how a Quantum Mechanics model can be defined on it. In particular, the emphasis 
was put on the determination of how many supercharges were broken due to the NAC 
deformation. Starting from a general deformation of the superspace fermionic coordinates 
and working in the chiral base, we found that one half of the original supersymmetry 
algebra (corresponding to the supercharge Q) can be preserved, the same as it happens in 
NAC field theories.

By using a Moyal-Weyl product to realize the deformation, we defined a deformed 
W = 2 SUSY theory in terms of the (1, 2,1) supermultiplet for an arbitrary superpotential. 
To do this we applied a remarkable result [23]-[25] for the deformed two dimensional sigma 
model which allows to obtain a closed expression for the deformed superpotential. In this 
way we found that the resulting Lagrangian takes the same form as the undeformed one 
but with a superpotential which is the average of its undeformed value in the interval 
((f) — cF/2,(f> + cF/ty, with c related to the deformation as given by formula (3.5). As 
a consequence, the NAC deformed superpotential depends not only on (f> but also on the 
auxiliary field F.

Concerning the supersymmetries of the deformed model, an expression in terms of 
the component fields for the surviving charge Q was easily found by using its differential 
operator representation (2.14). The fact, that the Hamiltonian was still Q-exact made 
natural to propose an ansatz for a second supercharge Q. This charge is found to be 
conserved and together with Q, defines a nonlinear realization of the supersymetry algebra:

{Q,Q}p =-2iH, {Q,Q}p = 0, {Q,Q}p = 0. (6.1)

As a result, we have the unexpected result that the deformed model has as many (conserved) 
supercharges as the undeformed one.

We analyzed the conservation of these supercharges in the quantum theory and whether 
they were or not spontaneously broken. The fact, that the deformed Hamiltonian is, in 
general, non hermitian leads to non-hermiticity of supercharges. However, we found that, 
whenever the undeformed theory is supersymetric, the Witten index, defined as a. path
integral, does not. change with the deformation. This result, allowed to determine the 
difference between the number of boson and fermion states annihilated by the supercharge 
and then, to know when the supercharge is not. spontaneously broken.

Finally, we also formulated the deformed theory in terms of the (2, 2,0) supermultiplet, 
that is, by using complex chiral superfields instead of real ones. In this case, requiring the 
Moyal-Weyl product, to preserve the chirality condition imposes constraints on the class 
of deformations. Now these constraints turn out. to be too restrictive so that finally the 
resulting deformed action coincides with the undeformed one.

Our work suggests that NAC quantum field theories could have more supersymmetries 
than those one naively expect, in view of the deformation. It. would be very interesting to 
gain a. deeper insight, in this direction.

JHEP08(2006)081
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Non(anti)commutative Quantum Mechanics is also a very interesting topic for further 
analysis in connection with the no-linear sigma model. It is known that the addition of 
more “superspace structure” by means of NAC deformations leads to new deformations in 
complex geometry, whose geometrical significance is yet to be understood [27]. The study 
of NAC deformed one dimensional no-linear sigma model can shed some light on this issue.

Finally, as it happens with Noncommutative QM, non(anti) commutative QM could 
have  applications in condensed matter problems. For instance, it has been shown that, in 
supermatrix models, fuzzy superspheres arise as classical solutions, and their fluctuations 
yield to NAC field theories [28]. Some interesting relations between lowest Landau level 
(LLL) physics and NAC geometry have also been reported [29, 30]. With these recent 
developments, the supersymmetric quantum Hall systems might be the simplest “physical” 
set-up of NAC geometry.
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