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Abstract. DNA sequence alignment is one of the most important operations of computational biology. In 1981, Smith 

and Waterman developed a method for sequences local alignment. Due to its computational power and memory 

requirements, various heuristics have been developed to reduce execution time at the expense of a loss of accuracy in 

the result. This is why heuristics do not ensure that the best alignment is found. For this reason, it is interesting to study 

how to apply the computer power of different parallel platforms to speed up the sequence alignment process without 

losing result accuracy. 

In this article, a new parallelization strategy (HI-M) of Smith-Waterman algorithm on a multi-core cluster is presented, 

configuring a pipeline with a hybrid communication model. Additionally, a performance analysis is carried out and 

compared with two previously presented parallel solutions. 

Finally, experimental results are presented, as well as future research lines.  
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1 Introduction1 

The study of distributed and parallel systems is one of the most active research lines in Computer Science nowadays 
[1][2]. In particular, the use of multiprocessor architectures configured in clusters, multiclusters, grids and clouds, 
supported by networks with different characteristics and topologies, has become general, not only for the development of 
parallel algorithms but also for the execution of processes that require intensive computation and the provision of 
concurrent web services [3][4][5][6]. 

The term cluster is applied to “sets of computers built with standard hardware components that act as if they were an 
only computer” [7] [8]. Cluster technology has evolved to support activities that go from supercomputing applications 
and mission-critical software, to web services and  high-performance databases. 

Clusters’ computing is the result of the convergence of several current trends, including the availability of cheap high-
performance processors and high-speed networks, the development of software tools for high-performance distributed 
computation, and the growing need for computer power for the applications that require it [9].  

The technological change caused by energy consumption and heat generation problems that appear when scaling 
processor speed has caused the appearance of multicores. This type of processors is formed by the integration of two or 
more computer cores within the same chip, and increases application performance by dividing computing work among 
all available cores [10][11]. 

The incorporation of this type of processors to conventional clusters gives birth to an architecture that combines 
shared and distributed memory, known as multicore cluster [12][13].  

1.1 DNA sequence comparison on a multicore cluster 

One of the areas of greatest interest and growth in the last few years within the field of parallel processing applications is 
that of the treatment of large volumes of data such as DNA sequences. The extensive comparison processing required to 
analyze genetic patterns demands a significant effort in the development of efficient parallel algorithms [14]. 

The center for all bioinformatics operations and analyses is partly held by Sequence Alignment, both for pattern 
searching among amino acid and nucleotide sequences, and for the search of phylogenetic relationships among 
organisms. The Smith-Waterman algorithm for local alignment is one of these methods; it focuses on similar regions 
only in part of the sequences, which means that the purpose of the algorithm is finding small, locally similar regions. 
This method has been used as the basis for many subsequent algorithms and is often used as basic pattern to compare 
different alignment techniques. If the length of the sequences involved are N and M, the complexity of the algorithm is 
O(NxM). Thus, the problem is scaled as the square of sequence size [15]. 

                                                           
1 The final authenticated version is available online at http://dl.acm.org/citation.cfm?id=2047950.2047978 

http://dl.acm.org/citation.cfm?id=2047950.2047978


Taking into account that sequences can have up to 109 nucleotides each, the time and memory required to solve this 
problem with a sequential algorithm is impracticable. This leads to the parallelization of the algorithm over powerful 
parallel architectures. 

In this paper, a new parallel solution for the Smith-Waterman algorithm on a multi-core cluster (HI-M) is proposed. 
The solution is compared with two previously developed versions (PM and HI) [16] that use different resolution schemes 
and communication models.  

In Section 2, the Smith-Waterman algorithm is explained, together with the sequential and the parallel solutions used 
in this paper. In Section 3, the experimental work carried out is described, whereas in Section 4, the results obtained are 
presented and analyzed. Section 5 presents the conclusions and future lines of work in relation to this paper. 

2 Smith-Waterman Algorithm definition 

This method allows aligning two DNA sequences by inserting gaps (if necessary) that are used to detect locally similar 
regions that may indicate the presence of a relation between both sequences, which is done by assigning a similarity 
score. If gaps are inserted, that is, certain elements of the sequences are not aligned to achieve a better overall alignment, 
a penalization is applied. 

The algorithm calculates a similarity score between two sequences and then, if necessary, employs a backwards 
alignment process for an optimal result [14].  

The following paragraphs explain the operation of the algorithm to find a similarity score between two DNA 
sequences. 

Given two sequences: A = a1a2a3…aM  and B = b1b2b3…bN, a matrix H of (N+1)x(M+1) is built, in such a way that the 
nucleotide bases that form sequence A label the rows (starting with 1), and those from sequence B label the columns 
(starting with 1). The following steps are applied to calculate the values of H that will yield the similarity score between 
A and B: 

a. Start row 0 and column 0 of H with 0, as indicated in Equation 1. 
 MjNiHH ji  0and0for000

          (1) 

b. Calculate the value of Hij, i  [1,..,N] and j  [1,..,M] by means of Equation 2. This value indicates the 
maximum similarity between two segments ending in ai and bj, respectively. 
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 V(ai, bj) is the matching function that indicates the score obtained for matching ai with bj. It is based on a table of 
values called substitution matrix that describes the probability of a nucleotide base from sequence A at position i 
to occur in sequence B at position j. The most common matrix is the one that rewards with positive value when 
ai and bj are identical, and punishes with a negative value otherwise.  

 Cij is the score in column j considering a gap, and is calculated with Equation 3.  

 )}({max ,1 kgHC jkiikji                                   (3) 

 Fij is the score in row i considering a gap, and is calculated with Equation 4. 
 )}({max ,1 lgHF ljijlji                                     (4) 

 g(x) is the penalization function for a gap  of length x, and is obtained with Equation 5, q being the penalization 
applied for opening a gap  and r the penalization for prolonging it.    
 )0;0()(  rqxrqxg                            (5) 

c. The similarity score is obtained as shown in Equation 6.  
  }{max )0)(0( jiMjNi HG                                       (6)    
d. Based on the position in matrix H where the value G was found (representing the end of the highest-scoring 

alignment between both sequences), a backwards process is performed to obtain the pair of segments with 
maximum similarity, until a position whose value is 0 is reached, this being the starting point of the segment.   



2.1 Sequential solution of Smith-Waterman algorithm 

In this section, the sequential solution of Smith-Waterman algorithm is analyzed with the purpose of determining the 
similarity score between two DNA sequences. This means that the backwards process is not taken into account when 
obtaining the segment that represents the optimal alignment (step d of the algorithm explained in the previous section is 
not performed). 
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Fig. 1. Data dependency scheme. 

Figure 1 shows the data dependency that exists for calculating matrix values. To obtain Hi,j, the result of Hi-1,j-1 (Hd in 
Figure 1) is required, and the score must be known when considering a gap in row i and another one in column j. This 
restriction allows calculating H values from top to bottom and left to right (H11, H12, H13, …H21, H22, H23, …..). 

Taking into account that step d of the algorithm is not carried out, matrix H does not have to be stored in full, all that 
is needed is: 

 A vector h of length M+1 that at each position keeps the value obtained in the last processed row over that 
column.  

 An element e to temporarily store the last value calculated in the row that is being processed. In Figure 1, e = 
Hi,j-1. 

 A vector c of length M+1 that at each position keeps the maximum score considering a gap in that column.  
 An element f that keeps the maximum score considering a gap in the row that is being processed. In the example 

shown in Figure 1, f = Fi, j-1. 

2.2 General parallel solution of Smith-Waterman algorithm 

The data dependency mentioned in the previous section causes the problem to be solved following a pipeline scheme 
where S stages perform the same work over various consecutive nucleotide subsets of the first sequence (A in Figure 1). 
In each cycle, stage si (for i  [1, S-1]) receives a data block from si-1, solves part of its work, and then sends these results 
to si+1 (except for the last stage which does not need to send its results to any other stage). The first stage (s0) only 
performs its work by sending partial results (corresponding to a block) to its successor. 

An important aspect of this solution is selecting the number of elements (BS) from sequence B that form the data 
blocks that are sent from one process to another, taking into account that: 

 Pipeline parallelism is exploited to its maximum capacity only after S-1 cycles have been processed. That is, when 
all stages have received work to do. The larger the BS, the longer the time required to fill the pipe, and therefore, 
the lower its exploitation. From this point of view, BS should tend to 1. 

 If the size of BS is very small, the stages spend more time communicating partial results than actually processing 
information. From this point of view, BS should tend to N. 

 A suitable block size should be found, so that data communication and data processing can be done simultaneously. 
The optimal size does not only depend on the architecture used, but also on the communication model implemented.  
 In previous works, a procedure for calculating the optimal value of BS based on architecture characteristics and 
sequence size has been established [17]. 

2.2.1 Message Passing as communication model 

In this case, each pipeline stage is carried out by a different process pi (for i  [0, S-1]), and partial results are 
communicated by sending messages between consecutive processes. The first sequence (A in Figure 1) is distributed by 
p0 among the S processes that form the pipeline. 

2.2.2 Shared Memory as Communication Model 

In this case, each pipeline stage is carried out by a different thread ti (for i  [0, S-1]). Instead of communicating partial 
results through message passing, these are kept in the shared memory as a single structure (as in the sequential 
algorithm). Consecutive threads are synchronized to indicate that work with a new data block can begin. 



2.2.3 Combination of message passing with shared memory as communication model 

When each process pi begins (for i  [0, P-1]) it generates T-1 threads (S = PxT) to jointly solve the data blocks 
corresponding to the different cycles. Thus, there are PxT threads (all P processes plus all T-1 threads generated by each 
of them), which means that the set of nucleotides from the first sequence is equally distributed among PxT threads.   

The threads that are in the same node synchronize and communicate through shared memory, whereas those that are in 
different nodes do so through message passing. 

Figure 2 shows a scheme of the pipeline formed by algorithm HI-M assuming an architecture of P blades with T cores 
each. 

 
Fig. 2.  Schematic representation of the pipeline formed in algorithm HI-M. 

3 Experimental Work 

In this paper, language C is used with OpenMPI and Pthreads libraries for message passing and the handling of threads, 
respectively. 

3.1 Architecture used 

To analyze the behavior of the algorithms, tests were carried out on a multi-core cluster: Blade with eight blades, each 
with two quad core Intel Xeon e5405 2.0 GHz processors. Each blade has 2 Gb RAM memory (shared between both 
processors) and 2 x 6Mb L2 cache for each pair of cores [18][19]. 

3.2 Algorithms used 

The algorithms used in this experiment are described below: 
 PM: this solution is based on using a pipeline of S = P stages as the one described in Section 2.2.1, where P is the 

number of cores used [16]. 
 HI: this hybrid solution is based on the use of a pipeline of S = P stages as the one described in Section 2.2.1, using 

in each stage a pipeline of T phases as the one detailed in Section 2.2.2, where P is the number of processors used 
and T is the number of cores in each processor [16]. 

 HI-M: this new hybrid solution is based on using a pipeline of S = PxT stages as the one described in Section 2.2.3, 
where P is the number of blades used and T is the number of cores in each blade. 

3.3 Tests carried out 

The algorithms were tested using all the cores with different numbers of blades: two, four and eight, which means that 
16, 32 and 64 cores were used, respectively. Sequence sizes of various lengths (65536; 131072; 262144; 524288; 
1048576) were also taken. Table 1 shows the optimal block size (BS) used in each test in accordance with the function 
described in previous works [17]. 

Table 1. Block size BS used in each test run on the multicore cluster. 



 

4 Results 

To assess the behavior of the algorithms developed when scaling the problem and/or the architecture, the efficiency of the 
tests carried out are analyzed [1][3][9].  

Figure 3 shows the efficiency achieved by the algorithm H1-M when using two, four and eight blades of the 
architecture for different problem sizes (N). The sizes of the data blocks used were detailed in Table 1. 

The chart shows that the efficiency increases when the length of the sequences (problem size) increases. On the other 
hand, the efficiency decreases when the number of cores used increases, although this reduction is less significant as 
problem size increases.  

 

 
Fig. 3.  Efficiency achieved by algorithm HI-M when using 16, 32 and 64 cores of the architecture for different problem 

sizes (N). 

The efficiency achieved by the new algorithm (HI-M) and H1 is compared using two, four and eight blades of the 
architecture for different sequence lengths (N). Figure 4 shows the percentage of the relative difference between the 
efficiencies of both algorithms (rpdHI), calculated by means of Equation 7. 
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Better efficiency achieved by algorithm HI-M versus HI can be clearly seen. This is mainly due to the resolution 
scheme (pipeline of pipelines) used by algorithm HI, where processes and threads are idle most of the time. The sizes of 
the data blocks used are detailed in Table 1. 

This chart shows that the difference between the efficiencies achieved by HI and HI-M decreases as problem size 
increases, and inversely, it increases as the total number of nodes increases. 

 
 



 
Fig. 4. rpdHI with 16, 32 and 64 cores for different sequence lengths (N). 

The efficiency achieved by the new algorithm (HI-M) and PM is also compared using two, four and eight blades of the 
architecture for different sequence lengths (N). Figure 5 shows the percentage of the relative difference between the 
efficiencies of both algorithms (dprHIM), calculated by means of Equation 8. 
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The chart shows that the performance of both algorithms is similar, although PM has a slight advantage over HI-M. 
The sizes of the data blocks used were detailed in Table 1. 

The difference between the efficiencies achieved by PM and HI-M is not significant, being less than 2% in all cases. It 
can be observed that the difference decreases as the size of the problem increases, and inversely, it increases as the total 
number of cores increases. The similarity of the results is favored by the use of the same resolution scheme by both 
solutions. The minimum difference between the efficiencies is due to two factors. First, both algorithms have reduced 
memory requirements, which does not allow exploiting the benefits of using shared memory. The second factor is the 
optimization of current message passing libraries to work in shared memory environments. The combination of these two 
factors improves the performance of PM versus HI-M. 

 

 
Fig. 5. rpdHIM with 16, 32 and 64 cores for different sequence lengths (N). 

5 Conclusions and Future Works 

In this paper, a new parallelization strategy for the Smith-Waterman algorithm for DNA sequence alignment is 
proposed. Also, its performance is analyzed and compared with that of two other parallel solutions to the same problem 
that were previously presented. The architecture used for the experiments is a multi-core cluster (eight blades with eight 
cores each). 

The two first solutions presented, PM and HI, use different resolution schemes (single pipeline the first one, and 
pipeline of pipelines the second one) and different communication models (message passing and a hybrid combining 
message passing with shared memory, respectively). The strategy proposed combines characteristics of both previous 
solutions, since it uses the pipeline resolution scheme from PM and the hybrid communication model from HI. 

The algorithms were tested using various work and architecture sizes. The result obtained was that HI-M achieves a 
performance that is much better than that of HI and very similar to that of PM. The significant difference with HI is 
explained by the overhead generated by the idle time of the processes and threads of this solution; whereas the significant 
similarity between PM and HI-M is due to the use of the same resolution scheme (single pipeline), and the slight 



advantage of PM over HI-M is due to the low memory requirements of both algorithms together with the optimization of 
current message passing libraries. 

As future lines of work, we plan to study the behavior of these algorithms in heterogeneous multi-core clusters, and 
analyze them from the point of view of energy efficiency on different architectures [20][21]. 
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