Available online at www.sciencedirect.com
i s LINEAR ALGEBRA
scuence@omec:'r S
APPLICATIONS

LSEVIER Linear Algebra and its Applications 402 (2005) 367389
www.elsevier.com/locate/laa

Weighted projections and Riesz frames

b.x.1 0 s, a
Jorge Antezana ?, Gustavo Corach , Mariano Ruiz ¢,
Demetrio Stojanoff 2

ADepro. de Matemdtica, FCE-UNLP and IAM-CONICET. La Plata. Argentina
bDepto. de Matemdtica, FI-UBA and IAM-CONICET, Saavedra 15, Piso 3.
Buenos Aires 1083, Argentina
CDepto. de Matemdtica, FCE-UNLP and IAM-CONICET, 1 y 50 (1900), La Plata, Argentina

Received 21 January 2004; accepted 18 January 2005
Available online 14 March 2005
Submitted by V. Mehrmann

Abstract

Let .# be a (separable) Hilbert space and {ey }; | a fixed orthonormal basis of .# . Moti-
vated by many papers on scaled projections, angles of subspaces and oblique projections, we
define and study the notion of compatibility between a subspace and the abelian algebra of
diagonal operators in the given basis. This is used (o refine previous work on scaled projec-
tions. and to obtain a new characterization of Riesz frames.
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1. Introduction

Weighted projections (also called scaled projections) play a relevant role in a vari-
ety of least-square problems. As a sample of their applications and of their relatives,
namely, weighted pseudoinverses, they have been used in optimization (feasibility
theory, interior point methods), statistics (linear regression, weighted estimation),
and signal processing (noise reduction).

Frequently, weighted pseudoinverses take the forms (ADAY™'AD, (ADAY AD,
(ADA*)™'AD or (ADA*)'AD, according to the field (real or complex) which
is involved in the problem and to different hypothesis of invertibility. Analogous
formulas hold for the corresponding weighted projections. In general D is a positive
definite matrix and A is a full column rank matrix.

In a series of papers, Stewart [33], O'Leary [30], Ben-Tal and Taboulle [4], Hanke
and Neumann [23], Forsgren [19], Gonzaga and Lara [22], Forsgren and Sporre [20],
and Wei [39,37,36,35] have studied and computed quantities of the type

sup [y (D, Al

Der
where I' denotes a certain subset of positive definite invertible matrices and y (D, A)
is any of the weighted pseudoinverses mentioned above. The reader is referred to the
papers by Forsgren [19] and Forsgren and Sporre [20] for excellent surveys on the
history and motivations of the problem of estimating the supremum above, and also
the recent books [34] by Wang et al. and [38] by Wei.

It should be said, however, that the references mentioned above only deal with the
finite dimensional context. In order to deal with increasing dimensions or arbitrarily
large data sets, we present the problem in an infinite dimensional Hilbert space.

Moreover, we present a different approach to this theory, valid also in the finite
dimensional context, based on techniques and results on generalized selfadjoint pro-
jections. Recall that, if D is a selfadjoint operator on a complex (finite or infinite
dimensional) Hilbert space #°, another operator C on S is called D-selfadjoint it C
is Hermitian with respect to the Hermitian sesquilinear form

& mp = (D& n) (&.neA)

ie. if DC = C*D. We say that a closed subespace & of # is compatible with D (or
that the pair (D, .¥) is compatible) if there exists an D-selfadjoint projection Q in
A with image .. It is well known [11] that in finite dimensional spaces, every sub-
space is compatible with any positive semidefinite operator D. In infinite dimensional
spaces this is not longer true; however, every (closed) subspace is compatible with
any positive invertible operator and, in general, compatibility can be characterized in
terms of angles between certain closed subspaces of 57, e.g., the angle between %
and (D.¥)*.

If the pair (D, %) is compatible, the set of D-selfadjoint projections onto . may
be infinite; nonetheless, a distinguished one denoted by Pp «, can be defined and
computed (see [11] or Section 2.2).
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In the finite dimensional case, from the point of view of D-selfadjoint projections,
the study of weighted projections allows us to obtain simpler proofs of some known
results. Another advantage this perspective offers is that these proofs can be easily
extended to more general settings which are also important in applications. These
applications include projections with complex weights and the infinite dimensional
case. Moreover, this approach establishes the relationships among the quantities that
have appeared throughout the study on weighted projection (usually, operator norms,
vector norms and angles).

A well known result due to Ben-Tal and Teboulle states that the solutions to
weighted least squares problems lies in the convex hull of solutions to some non-
singular square subsystems. We refer the reader to Ben-Tal and Teboulle's paper
[4], or [19,39] for the following formulation: let A be an m x n matrix of full rank.
Denote by J(A) the set of all m x m orthogonal diagonal projections such that
QA C" — R(Q) is bijective. Then, for every m x m positive diagonal matrix D,

2
[ deuDg)|det(Ag)| ) AQAT Q.

AA*DA)'A*D = ;
( ) “?‘ k‘,_5__.,._:f|“IdL‘l!‘”plIch;’lpIl|3

(1)

where Ag (resp. Dg)is QA (resp. OD) considered as a square submatrix of A (resp.
D).

In Section 3 we show that, if ¥ = R(A), then for every D € o+ and Qe JA)
the following identities hold:

AA*DA'A*D = Ppy and A(QAY'Q = Pg o,

where Pp » and Py o denote the distinguished projections onto %" which are D-
selfadjoint and Q-selfadjoint, respectively.

Then, Ben-Tal and Teboulle’s formula (1) can be rewritten in the following way:
if R(A) = % and forevery D € &,

Pp g ecofPg o Qe J(A).

This implies, in particular, that supp. .+ || Pp,o || € maxgesa) | Po,«|. The same
inequality was proved independently by O'Leary in [30], while the reverse inequality
was initially proved by Stewart [33]. A slight generalization of Stewart’s result is
proved in this section. Another application of the projections techniques provides an
easy proof of a result of Gonzaga and Lara [22] about scaled projections, even for
complex weights.

In Section 4, we extend the notion of compatibility of a closed subspace, with
respect to certain subsets of L(#)". Given I' € L(#)" and a closed subspace .,
we say that . is compatible with I"if (D, %) is compatible for every D € I" and it
satisfies Stewart’s condition:

sup || Pp vl < .
Der
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For a fixed orthonormal basis 4 = {e,},en of A, we denote by & the diagonal
algebra with respectto 4.1.e. D € Zif De,, = Ayey, (n € N) for abounded sequence
(Ap) of complex numbers. Next, we consider compatibility of % with respect to

. ", the set of positive invertible elements of & (i.e. all 1, > &, for some & > 0);
. 2(Z). the set of projections in & (i.e. all &, =0 or 1),

. Po(Z). the set of elements in Z(<) with finite rank, and

. Po,# (D), the set of elements @ € Po(Z) such that R(Q) N7 = {0},

O O R S R

For a closed subspace %, we show that compatibility with any of these sets is
equivalent. In the first case, we say that . is compatible with the basis .4 (or %4-
compatible).

This notion is very restrictive. Nevertheless, the class of subspaces which are
compatible with a given basis 4 has its own interest. Indeed, as we show in Section
5, if dim gt = oo, then .7 is #-compatible if and only if the class of frames whose
preframe operators (in terms of the basis #) have nullspace &, consists of Riesz
frames (see Section 5 for definitions or Casazza [7], Christensen [9,10] for mod-
ern treatments of Riesz frame theory and applications). We completely characterize
compatible subspaces with 4 in terms of Friedrichs angles (see Definition 2.1) and
we obtain an analogue of Stewar(—O’'Leary identity. Let . be a closed subspace of
A For J € N, denote by 5 ; the closed span of the set {¢, : n € J} and P; the
orthogonal projector onto # ;. In the case that J = {1, ..., n}, we denote .# , and
P, instead of # y and P;. Then, the main results of this paper are;

1. The following conditions are equivalent:
(a) ¢ is compatible with Z;
(b) suplc|¥. A ;1. J < N} < 1, were c[7, .4]| denotes the Friedrichs angle
between the closed subspaces 7 and . #:
(¢) sup{cl-Z. 7] : J € Nand Jis finite } < 1,
(d) all pairs (Py, &) are compatible and sup{|| Pp, #|| : J € N} < oc.
In this case

sup{l| Pp, ¢ : D € Z*}=sup{||Pp, Il : J < N}
-1/2

\
- (1 — sup e[S, R(Q) Y
Ozd () /
2. . is compatible with 2" if and only if
@) & =Uyen S NHy and
(b) for every n € N, the subspace & N #, is compatible with .4 and there exists
M > 0 such that sup{|| Pp, vrx, Il : J S N} < M foreveryn € N.
3. If dim . < oo, then % is compatible with .# if and only if there exists n € N
such that & C #,.



J. Antezana et al. / Linear Algebra and its Applications 402 (2005) 367-389 371

2. Preliminaries

Let % be a separable Hilbert space and L(#") be the algebra of bounded linear
operators on .# , For an operator A € L(5¢), we denote by R(A) the range or image
of A, N(A) the nullspace of A, o(A) the spectrum of A, A* the adjoint of A, p(A)
the spectral radius of A, ||A| the usual norm of A and, if R(A) is closed, A" the
Moore—Penrose pseudoinverse of A.

Given a closed subspace & of #, we denote by P. the orthogonal (i.e. sel-
fadjoint) projection onto .%. If B € L() satisfies P, B P, = B, we consider the
compression of B to & (i.e. the restriction of B to .% as a map from .% to %), and we
say that B is considered as acting on &,

Given a subspace .% of , its unit ball is denoted by (%), and its closure by 7.
The distance between two subsets S1 and S» of J# is

d(S1, )y =1inf{|lx — v||: x € S1, vy € $}.

Along this note we use the fact that every subspace .7 of # induces a representation
of elements of L(5) by 2 x 2 block matrices. We shall identify each A € L(#¢)

Al Anp

' g
with a 2 x 2-matrix , which we write to emphasize the decompo-
(AZI Azz) 3L g d

- ol o : Ar, ALY, . .

sition which induces it. Observe that <A’l‘1 Ail is the matrix which represents
12 22/

A*

2.1. Angle between subspaces

Among different notions of angle between subspaces in a Hilbert space, we con-
sider two definitions due to Friedrichs and Dixmier (see [16,21]).

Definition 2.1 (Friedrichs). Given two closed subspaces . # and .4, the angle between
M and A" is the angle in [0. 7w /2] whose cosine is defined by

cltl, v]=sup{|E. p)| :E €. MS(MNN)nENOD(MNAN)
and [§1l = lInll = 1}
Then, the sine of this angle is
s[tl, /= (1 — c[dl, VDY? = d((A)1, N & (AN N)).

The last equality follows from the definition by direct computations.

Definition 2.2 (Dixmier). Given two closed subspaces .# and .47, the minimal angle
between .# and 4" is the angle in [0, 7/2] whose cosine is defined by

cold, A7 =sup{[{§. | : § € .M.ye A and [§] = 7]l =1}
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The reader is referred to the excellent survey by Deutsch [15] and the book of Ben-
Israel and Greville [3] which also have complete references. The next propositions
collect the results about angles which are relevant to our work.

Proposition 2.3. Let 4 and A" be to closed subspaces of #° . Then

1.0 . 47| <col#, V7] = 1.
2.cldl, v =col.l S(AMNNY, i\ =coltl, VS (AMN AN
3. cldl, N = el - A
4. coldl, NV = Py Pyll = | PuPyPuyll?
5. clll, V1= 1PuPuw — PLyrwyt Il = 1 Pa P PLyripyL|l-
6. The following statements are equivalent:

{) el A, V| < 1.

(il) A + A" is closed.

(i) . #+ 4+ N+ is closed.

Proposition 2.4 [6,28]. Given A, B € L(X), then R(AB) is closed if and only if

c[R(B), N(A)] < 1.

Proposition 2.5. Let P and Q be two orthogonal projections defined on 7 . Then,
1P QY = P A Q) = c[R(P), RGO,

where P A Q is the orthogonal projection onto R(P) M R(Q).

Proposition 2.6 (Ijance-Ptak [32]). Let Q be a projection with range % and with
nullspace A". Then

1
(1 = [[PaPyl)V/2 "~ (1 —c[R, /122

1ol = sl 17

2.2, D-selfadjoint projections and compatibility

Any selfadjoint operator D € L(#") defines a bounded Hermitian sesquilinear
form (€. i) p = (D&, 1), £.n € A . The D-orthogonal subspace of a subset .% of #
is #10 = (& (DE.y) =0V e &} =D Nyt = Do),

We say that C € L(#) is D-selfadjoint if DC = C*D. Consider the set of D-
selfadjoint projections whose range is exactly %

PD,.Sy={Qe2:RQ)=5.DQ = Q*D).

A pair (D, %) is called compatible if (D, ) is not empty. Sometimes we say that
D is &-compatible or that . is D-compatible.
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Remark 2.7. It is known (see Douglas [17]), that if 5y, #>. # 5 are Hilbert
spaces, B € L(3, # ) and C € L(1, # ), then the following conditions are
equivalent:

(a) R(B) € R(C);
{b) there exists a positive number X such that BB* < ACC* and
(c) there exists A € L(.# |, 5 3) such that B = CA.

Moreover, there exists a unique operator A which satisfies the conditions B =
CA and R(A) € R(C*). In this case, N(A) = N(B) and ||A||2 =inf{A : BB* <
ACC*}; Ads called the reduced solution of the equation CX = B. If R(C) is closed,
then A = CTB.

In the following theorem we present several results about compatibility, taken
from [11,12].

Theorem 2.8. If D € L(¢) is selfadjoint, and & is a closed subspace of #, we
h e
denote D = (f* ) oL Then:

1. (D. %y is compatible if and only if R(b) € R(a) ifand only if & + D1 (F+) =
H.
2. Inthis case. if d € L(S*, %) is the reduced solution of the equation ax = b then

]
PDﬂgﬂ: <(|) O) e P(D, . 7)

and. if /"= D"NS*Y N .7 then N(Pp o) =D "5 10 4.
3.If D e L(A#A)Y then /"= N(D)N Y and, for every Q € (D, ), thereis 7 €
L(FL, A7) such that

(1 0 d\ FouN
Q=Pps+z=[0 1 z] 4 . 2)
\0 0 0of 7+

Observe that (D, ) has a unique element (namely, Pp «) if and only if
ND)yNn¥ ={0}.
4. Pp o has minimal norm in (D, &), i.e. | Pp o| = min{|| Q| : Q € (D, 9)}.

The reader is referred to [11-13] for several applications of Pp . (see also Hassi
and Nordstrom [24]).

From now on, we shall suppose that D € L(#)%. in which case D'/? denotes
the positive square root of D.



374 J. Antezana et al. / Linear Algebra and its Applications 402 (2005) 367-389

Remark 2.9. Under additional hypothesis on D, other characterizations of compat-
ibility can be used. We mention a sample of these, taken from [11,12]:

1. If R(CPD P) is closed (or, equivalently, if R(PD?) or D1/2(.%#) are closed), Ithen
(D, &) is compatible . In this case, if D = (:._ " ) then Pp o = ((1) aob),
since a = P D P has closed range, and «" b is the reduced solution of ax = b.

2. If D has closed range then the pair (D, %) is compatible <> R(PDP) is closed
< R(DP)isclosed < ¢[N(D), 7] < 1.

3. If P, Q are orthogonal projections with R(P) = .7, then (Q, %) is compatible
< R(QP) is closed < ¢[N(Q), 7] < 1. Moreover, if (Q,.7) is compatible,
then # = % + O~ UF) = ¥+ (RIQ)NFL) + N(Q) and, il 4" = N(Q)N
S and M =SSN, then 4 (NS RN =7, and Py_y is
the projection onto .# given by this decomposition. In particular, if & @& N(Q) =
A, then Py o is the projection onto & given by this decomposition. Observe that
Py o = Py + Pg . 1t follows that

| Po.oll=1Pg. all = 1 —II(1 = Q)Py|*)~ /2
=(1 —c[N(Q), 1) "V2 =s[N(Q). ¥171.

Observe that, in finite dimensional spaces, every pair (D, %) is compatible be-
cause every subspace, a fortiori R(P D P), is closed.

We end this section with the following technical result, which we shall need in
what follows:

Proposition 2.10.  Suppose that ¥ € 7 are closed subspaces of # and

Dy 0 7
PsD=DPs. lIf R(PsDPy) is closed and D:(OI I\)) ;,J_. then
Py O\ T . o
Pp o= ( 0 O) i where we consider Pp, = as acting on 7 .
(a b\ | a'b .
Proof. Let D) = \h' 7oy Then Pp, 4 = 0 0 . On the other hand, if
{fa b O\ S (1aTbaTO\ i e o O
p=[pvc 0|70 henPps=10 0 o0 9‘9502( ’:;-’ 0)
\o 0D, 7 oo o) _
O

Remark 2.11. Proposition 2.10 is still valid if the assumption that “R{( P, D Py ) is
closed™ is replaced by “the pair (D, %) is compatible™. The proof follows the same
lines but is a little bit more complicated, because it uses the more general notion of
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reduced solutions (see Remark 2.7) instead of Moore—Penrose pseudoinverses. One
must also show that the pair (D1, &) is compatible in L(.7 ).

3. Scaled projections in finite dimensional spaces

In this section we study scaled projections in finite dimensional Hilbert spaces
from the viewpoint of D-selfadjoint projections. This is a new geometrical approach
to the widely studied subject of weighted projections which may be helpful in the
applications. In the next section we shall use this approach to extend some of these
results to infinite dimensional spaces. Additionally, we shall study the projections
with complex weights as those considered by Wei [37,36,39] and Bobrovnikova and
Vavasis [5] and we shall prove generalizations of some well known results about
classical scaled projections to the complex case.

Throughout this section, &,, denotes the abelian algebra of diagonal n x n com-
plex matrices, f/,+ denotes the set of positive invertible matrices of &, and #(%7,)
denotes the set of projections in Z,,.

Scaled projections are connected with scaled pseudoinverses which appear in
weighted least squares problems of the form

min{| DY*(8 — A&)|* : & € C"}.
where m 2 n, A is an m x n matrix of full rank, 8 € C" and D € fj It is well
known that the solution to this problem is

£ = (A*DAY TA*DB.
The operator A';) = (A*DA)"'A*D is called a weighted pseudoinverse of A.
In some situations it is useful to have a bound for the norms of the scaled pseudo-

inverses A;). In order to study this problem, Stewart [33] used the oblique projections
Pp = A(A*DA) ' A*D and proved that

M4 = sup{| A(A* DAY 'A*D| : D e 7} < ~. (3)

For Ae R and I C {1, ..., n} let my denote the minimal non-zero singular
value of the submatrix corresponding to the rows indexed by I of a matrix U whose
columns form an orthonormal basis of N (A}~

Stewart [33] proved that

MY <minfmy I C{12,...., nl (4)

and O’Leary [30] proved that both numbers actually coincide.
Independently, Ben-Tal and Teboulle [4] proved the next theorem, which refines
Stewar(—O’Leary’s result:

Theorem 3.1. Let A be an m x n matrix of full rank and let J(A) be the set of all
Q € P(Yy) such that QA : C" — R(Q) is bijective. Then, for every D € &/ it
holds that
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det(Dg)| det(A )| \A(QA)_IQ

= _ZPGJ(A) det(Dp) det(AP)|2/

AA'DATIA' D= Y (

Qel(4)

where Ag (resp. Do) is QA (resp. QD( considered as a square submatrix of A (resp.
D). In particular

Pp e colAQA'Q: Qe J(A).

The reader will find illustrative surveys in the papers by Forsgren [19], Forsgren
and Sporre [20] and in Ben-Israel and Greville's book [3] nice surveys on these
matters. See also the papers by Hanke and Neumann [23], Gonzaga and Lara [22],
Wei [35-37] and Wei and de Pierro [39].

Given a fixed positive diagonal matrix D € % ,,. the solution of

min{||DY2(8 — &)|? : £ € R(A))

is given by &€ = Ppp. Observe that | D'/2 . || is the norm induced by the inner prod-
uct {(D-, -), and therefore, Pp is the (unique) projection onto R(A) that is orthogonal
with respect to the inner product (D-. -). Therefore, under the notations of Section
2.2, Pp = Pp Rr(a). It is natural to ask if A(QA)~!Q coincides with Py geay for
every Q under the conditions of Ben-Tal and Teboulle’s Theorem 3.1. The answer to
this question is the goal of the next proposition.

Definition 3.2 [16]. Two closed subspaces . and Z of # are in position P’ if it
holds that 7~ N.¥ = 7 N+ = {0}. In this case, we write #Y.7 .

Proposition 3.3. Given an m x n matrix A of full rank, let D € &} and let Q be a
diagonal projection. Then

1. Pp.ra) = A(A*DA)"1A*D.
2. QA : C" — R(Q) is bijective if and only if R(Q)Y R(A).
3. If RCQ)YR(A) then Py riay = A(QA)T1Q.

Proof

1. It suffices to observe the coincidence of the range (resp. nullspace) of both pro-
jections Pp rea) and A(A*DA)"LA*D.

2. QA C" — R(Q) is bijective if and only if QA :C" — R(Q) and A*Q :
R(Q) — C" areinjective. As QA : C" — R(Q)isinjective if and only if R(A) N
N(Q) = {0}and A*Q : R(Q) — C" is injective if and only if R(Q) N R(A)*+ =
R(Q) N N(A*) = {0}, it follows that QA : C" — R(Q) is bijective if and only
it RCQYYR(A).

3. Clearly, A(QA)~'Q is a projection whose range is R(A) and whose nullspace
is N(Q). But, Py g(a) is also a projector with the same range and nullspace as
A(QA)1Q. In fact, by item 2 in Theorem 2.8,
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R(PQ,R(A)) = R(A) and
N(Pg.ria)) = 0"HR(AH) © (N(Q) N R(A)) = N(Q).

Hence A(QA) ™1 Q = Py piay. O
Using Proposition 3.3 we can restate Theorem 3.1 in the following way:

Theorem 3.4. Let & be a subspace of C" and let D € %" Then

Pp o €co{Pg o : Q € 2(%,) and R(Q)YT}. (5)
In particular,
sup [|Pp.o|l < max{||Po «|: Q € #1%,): R(QWTF}. (6)
D=sag

Remark 3.5. Inequality (6) is actually an equality. The converse inequality was
proved by Stewart and it is also a consequence of the next Proposition which follows
essentially Stewart’s ideas.

Proposition 3.6. Ler . be a subspace of C" und denote by ]
gonal positive semidefinite n x n mairices. Then

_the set of all dia-

sup [|[Fpwll= sup [[Pp.l|. (7

Dez, Dez;

Proof. Let D € o/ and consider the sequence of invertible positive operators
{Dk}k>1 defined by

|
D,=D+ —-1I.
k + X
If A" = 5% N(D), then
a 0B\ Yol fa++] 0O b \ SON
p=[(000].r ad De=| o L1 o |
\b*O(‘/ _';‘l— b* 0 C+%1/ yJ_
where ¢, and therefore a + %I are invertible. Hence, by Theorem 2.8,
(1 0 @+3D7'b (1 0 a by
Pp.,s=|0 I 0 and Ppy=10 I 0
\0 0 0 \0 0 0
So we obtain
[ Pp.w|l = lim || Pp, o|| < sup [|Pp |
K=ot e

which proves one inequality. The other inequality is a consequence of Eq. (6). O
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Corollary 3.7. Let ¥ be a subspace of C". Then

sup |Pp,oll = max{||Po #|l: Q € #(Zy): RIQ)L.Y}. (8)
De

Remark 3.8. This corollary and Eq. (4) are connected in the following sense. Ob-
serve that, by Theorem 3.6, the maximum can be taken either over all projections in
position P’ with & or over all the diagonal projections. So, it I < {1, ..., n} and
Q7 is the orthogonal projection onto the diagonal subspace spanned by {e; : i € I},
then

sup || Pyl = max{]| Pg, ol : 1 € {1.....n)}.
“'—:.r,:

Given a fixed I < {1, ..., n}, by Proposition 2.6 it is easy to see that for a given
diagonal projection Q

E|PQ17y||_2 =5 . NOnl=min{{Q;x.x}):x e S (X NNQr)
and ||x|| = 1}.

Since (% N N(Q1)) & ¥~ is the null space of P Q7 Pe, the previous equality can
be rewritten as

I Pg;.#II”*=min{i € 0 (Py Q1 Py) : ) 0}
=min{h € o(Q1 P+ Q) : A+ 0}
Consequently, if U is a matrix whose columns form an orthonormal basis of .%, then
we get Q7 Py Q7 = Q;UU*Q . Therefore
m3 = min{) € 5 (Q1 Py Q1) : A +# 0}

which shows that Egs. (4) and (8) are equivalent. In particular, note that if A is a full
rank matrix whose range is & and the subspaces R(Q;) and & are in position P,
then

1Po,. ol = IAQr AT Qs = mj .
Next, we consider projections with complex weights. These projections are stud-

ied by Bobrovnikova and Vavasis in [5], who define, for each positive real number
u, the sets

Cy={zeC: [Imz] < pRezandz # 0} and
Z, =1{D: D e & with entries in C,,},

and they prove that
Xau = sup ||A(A*DAYT'A*D| < cc.
Ne
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Let Zbe an m x (m — n) matrix, such that its columns form a basis of R(A)*.
If the weights are positive, i.e. if y# = 0, then Gonzaga and Lara [22] prove that
xA.0 = xz.o0. In the next proposition, we generalize this result for y+ 5= 0.

Proposition 3.9. Let A be anm x n matrix of full rank, and let Zbe anm x (m — n)
matrix whose columns form a basis of R(A)L. Then,

Xapu=Xz.u ¥Yn >0.

Proof. Fix D € %,,. On one hand, A(A*DA)"'A*D is idempotent and

R(A(A*DAY YA*D) = R(A) =: R.
N(A(A*DAY 'A*D) = N(A*D) = R(D*A)* = [D*(R(A)]* =: N.

On the other hand, Z(Z*D~1Z)~1Z*D~" is also idempotent and

R(Z(Z*D'Zy '7z*D~\Y=R(Z) = R(A)* = R,
NZZ*D ' 2y ' 27 D~ =NZ*D™Y) = R(D*' 7
=[D* " YR(AN)IT = D(R(A)) = N*.

Using the fact that || Pr Py || = c[R, N] = c[Rt, N*] = || Pg. Py. ||, and Ljance-
Ptak’s formula (Proposition 2.6), we obtain

IA*(ADA")'AD| =1 — | Pg Py )" "/2
=1 — |PrL Py >~ V2 = z*zD~'z*)"1zD 7).

Finally, since the map D — D! is a bijection of the set 2., the result follows
just by taking supremum over all positive definite diagonal matrices. O

4. Compatibility of subspaces and orthonormal basis
4.1. Definitions and main results

Throughout this section, 2 is a separable Hilbert space with a fixed orthonor-
mal basis 4 = {e|r=r,. Consider the abelian algebra & of all operators which are
diagonal with respect to 4, i.e. C € L() belongs to & if there exists a bounded
sequence of complex numbers {c¢,} such that Ce, = c,e, (n € N). Denote by gt
the set of all positive invertible operators of & and by 2(Z) the set of all projections
of 7.

Let us extend the definition of compatibility to the context of the diagonal algebra
9.
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Definition 4.1. A closed subspace ./ of 2 is compatible with % (or B-compatible)
if

sup c[.¥. R(Q)] =[S, 2] < L. 9

Qe#iz)

In this case, we define

g 1
KIS 2)= (0 —cls 2P~ = (( in 2 R(Q)]) :

Remark 4.2

1. Since c[#, 7| = el#=+. 7| for every pair of closed subspaces .% and .7, a
subspace ¥ is Z-compatible if and only if &+ is Z-compatible. Moreover,
S D] = c[Ft, 2.

2. If the dimension of the Hilbert space is finite, every subspace is compatible with
every orthonormal basis.

Using Remark 2.9 we can give an alternative characterization of compatibility.

Theorem 4.3. Let & be a closed subspace of . Then. & is B-compatible if and
only if
sup [ Pg,«| < oc. (10)

Qe e
Moreover, in this case,
sup [|[Pp Il = K[, Z].
g (W)

Qe

Proof. Given a projection Q, by Remark 2.9 we know that
1Pl = (1 = cl&, N(QIH V2.
If .7 is compaltible with 4, then c[.¥, ] < 1, and therefore
sup | Po.oll < (1—cls. 212 =K[¥. 2] < .

O=#(@)
Conversely, if (10) holds, there exist M > 1 such that suppes (g | Po, 2|l < M.
Therefore,

sup [ RQI=U0-M23Y2-1. 0O

Qep(e)

The main result of this section is the following theorem which is the natural gen-
eralization of Theorem 3.4 (or, more precisely, Corollary 3.7) to the infinite dimen-
sional setting.

Theorem 4.4. Let & be a closed subspace of # . Then. the following statements
are equivalent
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1. & is compatible with 2,
2. 8Uppeg+ 1 Pp.oll < 0.

In this case, it holds
sup [|Ppoll=K[S. Z]1= sup |Pg |-

Dest =

The proof of this theorem will be divided in several parts. We start with a technical
result.

Lemma 4.5. Let & be a closed subspace of # and suppose that Sup pg+ | Pp,» |l <
oo. Then, for every projection Q € P(Z) the pair (Q, &) is compatible, so that the
oblique projection Pg o is well defined for all Q € ().

Proof. let Q € Z(2) and consider the sequence of invertible positive operators
{Di}r 1 defined by Dy = O + %I. Since Dy is invertible, the projection Pp, » is
well defined. Moreover, by hypothesis we know that sup; || Pp, «|l < oo. There-
fore, the sequence { Pp, ~} has a limit point P in the weak operator topology (WOT)
of L(2£), because the unit ball of L () is WOT-compact (see 5.1.3 of [29]). More-

over, if .#" is separable, the ball is metrizable for the weak operator topology. There-
0

tfore, we can suppose that Pp, o =

n

—_—
We shall prove that P € 2(()..7). thatis, P> = P, R(P) = % and QP = P*Q.
The first two conditions follow from the fact that, for every k € N,

1 & 1 &
PD"’y:(O )E)k> Lo so that P:(O g) P

where x is the WOT-limit of the sequence x; = Py Dp(1 — Py). On the other hand,
foreachk € N,

DiPp,,s = Pp,_,Dr.

An easy 5 argument shows that Dy Pp, » ;_'—O(;; QP, so, taking limit in the above

equality and using the fact that the involution is continuous in the weak operator
topology, we obtain QP = P*Q. O

The next result, which can be proved in the same way as Proposition 3.6, by using
Lemma 4.5, provides the easier inequality in Theorem 4.4:

Proposition 4.6. Let & be a closed subspace of A and suppose that supp.g+
|Pp. ol < oo. Then, & is B-compatible and

K[/, 21= sup |[Po .| < sup ||Pp |- (11)
QP (%) D=z
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The other inequality of Theorem 4.4 is more complicated, so we first need to
prove a particular case of it. For each n € N, denote .#°,, = span{eq, ..., ent, On
the orthogonal projection onto -#7,. and for any closed subspace &, denote %, =
& N Ay Recall that, given two orthogonal projections P and Q, P A Q denotes the
orthogonal projection onto R(P) N R(Q).

Proposition 4.7. Let & be a finite dimensional subspace of # such that, for some
neN, % C i, Then & is B-compatible. Moreover, if E € Po(Z) satisfies P, <
E. then

{Ppy D et} CcolPpy: Qe PD).Q < Eand RIQ)VS).

In particular,

sup [[Pp ol <sup{l|Po.sll: Q € 2(2). Q < Eand RO}
Deat

=K[¥, Z].

Proof. Let £ € #¢(2) be such that P, < E. Denote . = R(E). Given D € &,
D = 0, the subspace .7 induces a matrix decomposition of D,

(D1 0\ T
D_(O Dz)gﬂ‘.

If the pair (D, %) is compaltible, it is easy to see that the pair (D1, &) is compatible
in L(J) and, by Proposition 2.10,

. . (P;J|_., 0N 7
Ppy = L0 0) i (12)

where Pp, . is considered as an operator in L(7). Since dim 7 < oo, we deduce
that & is #-compatible. The other statements follow from Theorems 3.4 and4.3. [
Lemma 4.8. Let .7 be a closed subspace of # such that

¢ = suplelS. A, ne N} < 1. (13)
Then

e.9)
U if B = 9",
n=1

Proof. The assertion of the lemma is equivalent to

SOT
Py A Qn / Pg.

H—

Let &£ € # be a unit vector and let & > 0. Let k € N such that ¢*~! < 5. By
Proposition 2.5, for every n > 1 it holds that
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&

[(Py Q)" — Py A Qull <

~t

. S.O.T. . . .

On the other hand, since Q, Ps i{ Py and the function f(x) = x* is SOT-contin-
H—e7

uous on bounded sets (see, for example, 2.3.2 of [31]), there exists np = 1 such that,

for every n = no,

I(Qn Po) — Pyl < =.

“

Therefore, for every n = ny,

I(Ps — P A Qn)EN < [Py — (Py Qu)IE||
Py Q) — Py A Qu)Ell <e. O

Observe that, using Proposition 4.7 and L.emma 4.8, we get the following charac-
terization of finite dimensional subspaces which are %-compatible:

Corollary 4.9. Let & be a finite dimensional subspace of # . Then & is B-com-
patible if and only if there exists n € N such that & < A,

Lemma 4.10. Let ¥ be a AB-compatible subspace and &, = & N #,. n € N.
Then

K[(Fy. 21= sup ||Pp o, < sup |[Pg ol = K[, ]
TP

Qe QeP(F)

Joreveryn = 1.

Proof. Using Corollary 4.7 and Theorem 4.6, we get

KISy, 21 =supl{l| Po.#, || - Q € <), Q < Oy and REQHYV.7 ).
Thus, it suffices to prove the inequality for every @ € #(Z) such that R(Q)L.S,
and Q < Q. Foreachsuch Q consider Q = Q4+ (1 — Q) € #(%). Then N(Q) =
N(Q)N R(Qp), and

c[N(Q), Lnl=sup{l(§, )| : & € N(@),n € Ly and |§] = |In|l =1}
=sup{l{&.n)|: &£ € N(@Q N R(Qn),n € Sy and &l = Iyl =1}

& ml:

<sup{[{&, £ e N(Q)NR(Qn).n €S and |IE] = lInll =1}
=sup{[{§,m|:§ € N(Q),ne & and &) = lInll = 1)

Therefore, using Remark 2.9, we obtain
1Pg.o, [l = SIN(Q). 41" S IN(Q). 17! = sIN(D). 17! = || Py .

which proves the desired inequality. [
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Remark 4.11. The statement of Lemma 4.10 can be rewritten as
=
K(Ss. T ( it 1, R(E)]) .

Actually, we proved that it suffices to take the infimum over the projections E €
#3127}, Indeed, it is enough to consider £ =1 — @, where Q are the projections
which appear in the proof of Lemma 4.10.

We can now complete the proof of Theorem 4 4.

Proposition 4.12. Let & be a %-compatible subspace of A . Then

sup || Pp.«| < K|, Z]. (14)
Deat

Proof. Fix D € 7. Recall that | - ||p denotes the norm defined by & — || D1/2&]|.
Since D is invertible, || - ||p is equivalent to || - ||; thus, the union of the subspaces
Sy is dense in & under both norms || - ||p and || - ||. Since Pp & (resp. Pp .z, )is the
D-orthogonal projection onto the subspace . (resp. .%,), then for every unit vector
EeAH

I1(Pp,», — Ppo)éllp —= 0.
n—>co
Using again the equivalence between the norms || - || p and | - ||, we get
I(Pp,#, — Pp,s) &|| — O.
n—>0o0

On the other hand, using LL.emma 4.10 and Proposition 4.7, it holds that, for each
nenN,
1 Pp,2, 5l < I Pp.o, | < K[Fn. Z1 < K[S. 2] sup [[Pool.
[el=d1=4]
Thus,

P&l = lim ||Pp g, &l < K17, %],
n—co

which completes the proof. [

4.2. Alternative characterizations of compatibility

In this section we add some characterizations of compatibility which involve only
finite dimensional diagonal subspaces.

Let us begin with a proposition whose proof is connected with the proof of The-
orem 4.4. We use the notations 5, O, and %, (for a closed subspace &) as
before.

Proposition 4.13. Let % be a closed subspace of . Then, the following statements
are equivalent:
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1. & is B-compatible;
2. @) U2, @ is densein
(b) there exists M >0 such that K[y, 2| = Supgepa) |Po.s, | <M for
everyn € N.

Proof
2 = 1. It is a consequence of Lemmas 4.8 and 4.10.
1 = 2. Following the same argument as in Proposition 4.12, we obtain that

sup [[Pp.oll < .
Deit

and, by Proposition 4.6, & is 4-compatible. [

Given T e L(5¢), its reduced minimum modulus (see, e.g., [26]), is defined by
y(T) = inf{||TE|| - € € N(T), €] = 1}.

It is easy to see that y(T') > 0 if and only if R(T') is closed. By Proposition 2.4, if
A, B € L(s¢) have closed ranges, then

y(AB) > 0 & ¢[N(A), R(B)] < 1.

The following proposition describes a useful relation between angles and the
reduced minimum modulus of an operator.

Proposition 4.14. Let T € L(A) and let P € L{ %) be a projection with R(P) =
. Suppose that y(T) > 0. Then

y(TY(1 = c[N(T), ST <y (TP) < IT I — c[N(T), 1)V (15)
Proof. Note that c[N(T), ST = co[N(T). S & (N(T)NF)] =
| Pniry Proviring ||, by Proposition 2.3. On the other hand,

NP =P YN(T) =P Y N(THNS)=NP)® (NT)NF),
so that

(N(TYPYr = (N(T)NF) C ¥ =R(P).
If £ e (N(T)PYL, |TPE|| = |TE|| = |T(PyryL€)l. Therefore, for every & €
N(T P)L,

y (D Py L& < ITPEN < IT I PrvryL&l-
Now, if ||&|| = 1, then

I Py ElIP=1 = | Pvél* 2 1 = | Pvry Praivmns I°
=1 —¢|N(TH. 7%

since £ € & (N(T) N .%). This shows that y(T)(1 — ¢[N(T), SN2 < y(TP).
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In order to prove the second inequality, consider a sequence &, of unit vectors in
F S (N(TYN L) = (N(TYP)* such that | Pyriénll = I|Pnery Prawvring | =
c[N(T), &1]; then,
y (T PY < T P& < TP Py ryLénll®
=|TI°A = I Pyyénll® — ITIPA = cIN(T), #1P). O

Recall the notations Zo(Z) = {Q € 2(<) : Q has finite rank} and Py #(Z) =
{Q € Zo(2): RUQ)IN.7 = {0}].

Proposition 4.15. Let & be a closed subspace of # . Then, the following conditions
are equivalent:

L. % is B-compatible, that is SUPppzp w /. R(Q)] < 1
2. SUPpesya) LS R(Q)] < 1;
3. SUPpeg, (o) L RIQ)] < 1.

Proof. Itisclear that 1 = 2 = 3. In order to prove that3 = 2,let T € L() such
that N(T) = .9 and y(T) > 0. Given Q € Zy(2) there exists E € Py #(Z) such
that £ < Q and R(T Q) = R(TE). So, using Eq. (15), we obtain
y (T2 = e[ REENP) SY(TEY = y(TET*) < y(TQT*) = y(T Q)?
<|ITIPA = el . R(Q)%).

Therefore,

y1T!:

T Qegl)nf (@)(1 —c[F REV?) <1 —cl¥. RUOV.
0,

Since we have chosen an arbitrary projection of 2¢(2) it holds that

0< inf (1—c[%. RIOP).
QePy(D)

which is equivalent to sup o ez, ¢[, R(Q)] < 1.
Finally, if condition 2 holds, we have that, in particular

sup{c[-#. # | :ne N} < 1,

SO U:;l # = 7. 0n the other hand, by Remark 4.11, there exists M € R such that

Kl 7] <M VneN.
Therefore, by Proposition 4.13, .% is #-compatible. [
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5. An application to Riesz frames

Recall that a sequence {&,} of elements of 5 is called a frame if there exist
positive constants A, B such that

AllEI> <) IE. £)F < BlEI? (16)

for all & € .# . The theory of frames, introduced by Duffin and Schaeffer [18] in their
study of non-harmonic Fourier series, has grown enormously after Daubechies et al.
[14] emphasized their relevance in time-frequency analysis. The reader is referred
to the books by Young [40] and Chistensen [8], and the surveys by Heil and Walnut
[25], Casazza [7] and Christensen [9] for modern (reatments of frame theory and
applications.

Itis well known that {&,} is a frame of 5 if and only if there exists an orthonormal
basis {e,}nen Of A and an epimorphism (i.e. surjective) T € L(5) such that &, =
Te,,n € N, If the basis {e, } ,en 1S fixed, the operator T'is called the analysis operator
and T*, given by T*& = Y, (&, &,)eq. is called the synthesis operator of the frame.
The positive inversible operator S = TT* (given by §& = Y (£, &,)&,) is called the
frame operator. In this case, the optimal constants for Eq. (16) are B = || S| = | T||?
and A = |77 = ()2

The frame {&,} is called a Riesz frame (see [10]) if there exists C = 0O such that,
for every J € N, the sequence {&,},<, is a frame (with constants Ay and By) of the
space # 5 =span{§, :ne Jyand A; > C.

Consider Py = Py, € 2(2). It is easy to see that {£,} is a Riesz frame if and
only if there exists ¢ > 0 such that ¢ < y(T Py) for every J € N. We prove now
that this condition is equivalent to the fact that N(T") is compatible with the basis

{en)nen:

Theorem 5.1. Given an orthonormal basis (ep)nen Of A and an epimorphism
T € L), then (Tey)yen is a Riesz frame if and only if N(T) is compatible with
respect (o the basis (en)nen.-

Proof. Fix J € N. Then R(T Py)isclosed if and only if ¢[N(T), # s] < 1 (that s,
y(T Py) # 0) and, in this case, T |», : Ay — R(T Py) defines a frame with con-
stants Ay = (T P;)? and By = ||T Py ||%. Now, using Proposition 4.14, the state-
ment becomes clear, because the frame defined by 7'is a Riesz frame if and only if
infycny y(T Py) > 0, which is equivalent to Sup e, cIN(T), # 5] = c[N(T), Y] <
1. O

Corollary 5.2. Given an orthonormal basis {e, }nen of 7 and an epimorphism T €
L() such that N(T) has finite dimension. then {T e,},en is a Riesz frame if and
only if there exists n € N such that N(T) < span{eq, ..., enl.
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Remark 5.3. We acknowledge the comments of a referee, who observed that the
last corollary only cover the case of what Holub called “near-Riesz basis™ [27]. In
particular, our result does not cover, e.g., overcomplete Gabor frames, which have
infinite excess (i.e., N(T') has infinite dimension). We plan to continue with these
matters elsewhere.
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