
Ecological and phylogenetic influence on mandible
shape variation of South American caviomorph rodents
(Rodentia: Hystricomorpha)

ALICIA ÁLVAREZ1†, S. IVAN PEREZ2† and DIEGO H. VERZI1*†

1Sección Mastozoología, División Zoología Vertebrados, Facultad de Ciencias Naturales y Museo,
Paseo del Bosque s/n, La Plata CP 1900, Argentina
2División Antropología, Facultad de Ciencias Naturales y Museo, Paseo del Bosque s/n, La Plata CP
1900, Argentina

Received 2 September 2010; revised 26 November 2010; accepted for publication 26 November 2010bij_1622 828..837

We analyzed mandible shape variation of 17 genera belonging to three superfamilies (Cavioidea, Chinchilloidea,
and Octodontoidea) of South American caviomorph rodents using geometric morphometrics. The relative influence
of phylogeny and ecology on this variation was assessed using phylogenetic comparative methods. Most morpho-
logical variation was concentrated in condylar, coronoid, and angular processes, as well as the diastema. Features
potentially advantageous for digging (i.e. high coronoid and condylar processes, relatively short angular process,
and diastema) were present only in octodontoids; cavioids showed opposing trends, which could represent a
structural constraint for fossorial habits. Chinchilloids showed intermediate features. Genera were distributed in
the morphospace according to their classification into superfamilial clades. The phylogenetic signal for shape
components was significant along phylogeny, whereas the relationship between mandibular shape and ecology was
nonsignificant when phylogenetic structure was taken into account. An early evolutionary divergence in the
mandible shape among major caviomorph clades would explain the observed strong phylogenetic influence on the
variation of this structure. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society,
2011, 102, 828–837.
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morphological diversification.

INTRODUCTION

Patterns and processes of morphological diversifica-
tion are of great interest in macroecology and evolu-
tionary biology (Schluter, 2000; Wainwright, 2007;
Diniz-Filho et al., 2009). Morphological variation
among species is mainly shaped by two factors:
ecology and evolutionary history (Schluter, 2000;
Viguier, 2002; Caumul & Polly, 2005; Wiens &
Graham, 2005). Evolutionary history is important
because ancestor–descendant relationships make
phylogenetically close species more similar to each
other with respect to their morphology than would be

expected by chance (Rohlf, 2001; Blomberg, Garland
& Ives, 2003; Garland, Bennett & Rezende, 2005). In
particular, several studies have shown that evolution-
ary history is paramount to shape morphological
variation at lower taxonomic levels (i.e. species and
genera) under conditions of ecological homogeneity
(Polly, 2001; Renaud, Chevret & Michaux, 2007; Perez
et al., 2009). Conversely, when ecological heterogene-
ity exists (e.g. great habit variation), as is usual at
higher taxonomic levels, ecological factors could be
more important with respect to shaping morphologi-
cal variation (Dumont, 1997; Nogueira et al., 2005;
Renaud et al., 2007; Perez et al., 2009). Tests for pat-
terns of morphological variation are more frequently
performed at lower taxonomical levels, whereas they
remain scarce at higher taxonomical levels that com-
prise great ecological variation (Goswami, 2006;
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Meloro et al., 2008; Morgan, 2009; Samuels, 2009;
Jones & Goswami, 2010).

The rodent mandible is an excellent model for
studies of patterns and processes of morphological
evolution (Duarte et al., 2000; Cardini, 2003; Klingen-
berg, Mebus & Auffray, 2003; Renaud & Michaux,
2003; Monteiro & dos Reis, 2005; Barrow & MacLeod,
2008; Zelditch et al., 2008; Hautier, Fabre & Michaux,
2009) because of its complex morphology mainly
related to functional demands of feeding and digging
activities in fossorial taxa (Hildebrand, 1985; Ubilla
& Altuna, 1990; Verzi & Olivares, 2006). Such func-
tional demands can generate great mandible morpho-
logical variation among species with wide ecological
differences (Thorington & Darrow, 1996; Renaud
et al., 2007). Caviomorphs (i.e. South American hys-
tricognaths), in particular, represent a very suitable
model for this type of study as a result of their great
ecomorphological diversity and long evolutionary
history. Caviomorphs are considered to be a mono-
phyletic group, according to phylogenetic estimations
using nuclear and extranuclear nucleotide sequences
(Huchon & Douzery, 2001; Poux et al., 2006). These
rodents probably had an African origin, likely with a
single dispersal event into South America, followed by
quick radiation in the early Oligocene (31 Mya; Vucet-
ich, Verzi & Hartenberger, 1999; Huchon & Douzery,
2001; Flynn et al., 2003; Opazo, 2005; Vucetich et al.,
2010b). Currently, caviomorphs show great ecological
diversity (Mares & Ojeda, 1982; Nowak, 1991). In
accordance with their wide-ranging habits (arboreal,
epigean, semi-aquatic, fossorial, subterranean;
Nowak, 1991; Emmons & Feer, 1997), their skeletal
morphology shows remarkable variation (Vassallo &
Verzi, 2001; Candela & Picasso, 2008; Morgan, 2009).
Previous analyses of craniomandibular morphological
disparity have shown that this morphological varia-
tion is more related to habit diversity than to masti-
catory strategies (Vassallo & Verzi, 2001; Olivares,
Verzi & Vassallo, 2004; Verzi, 2008).

In the present study, we analyze mandible shape
variation in caviomorphs through a wide taxonomic
range, from the level of genera through families up to
superfamilies, including several species belonging to
three of the four caviomorph superfamilies (Cavio-
idea, Chinchilloidea, and Octodontoidea). The main
goal of the study is to test whether mandible
shape variation among these rodents is related to
phylogenetic and/or habits variation using geometric
morphometric techniques (Adams, Rohlf & Slice,
2004; Mitteroecker & Gunz, 2009) and comparative
phylogenetic methods (Rohlf, 2001; Garland et al.,
2005). On the basis of functional characteristics of the
mandible and the habit diversity of caviomorph
rodents, we hypothesized that ecology is a key factor
in explaining mandible shape variation in these

rodents, whereas phylogenetic relationships, on the
other hand, are less important (Caumul & Polly, 2005;
Barrow & MacLeod, 2008; Zelditch et al., 2008). In
addition, we test the correspondence between shape
ordinations generated using two-dimensional land-
marks and landmarks plus semi-landmarks datasets,
and discuss the extent of functional and phylogenetic
information represented in each dataset.

MATERIAL AND METHODS
SAMPLE

One hundred and twenty-six mandibles of 19 living
species included in 17 genera and seven families,
representing three of the four caviomorph superfami-
lies (Cavioidea, Chinchilloidea and Octodontoidea),
were studied (Table 1; a detailed list of analyzed
specimens is provided in the Supporting information,
Appendix S1; morphological variation of the mandible
in analyzed caviomorph species is provided in the
Supporting information, Fig. S1). We follow the sys-
tematic scheme described by Woods & Kilpatrick
(2005) and Dunnum & Salazar-Bravo (2010). Only
adults, defined by the presence of a functional third
molar, were included, and males and females were
pooled in the analyses.

GEOMETRIC MORPHOMETRICS

Geometric morphometric techniques are an effective
tool for analyzing variation in complex structures such
as the mandible (Renaud & Michaux, 2003; Monteiro &
dos Reis, 2005; Barrow & MacLeod, 2008; Zelditch
et al., 2008). The present study follows the long tradi-
tion of analyzing mandible shape variation of rodents
in lateral view (Duarte et al., 2000; Cardini, 2003;
Cheverud, 2004; Perez et al., 2009). Two-dimensional
coordinates were captured on digital images of the left
hemi-mandible in lateral view; when this side was
missing or damaged, the reflected image of the right
side was used. Images were standardized for mandible
and camera lens plane position, and the distance to
camera lens (Zelditch et al., 2004). Two datasets were
chosen to represent the two-dimensional geometry of
the mandible in lateral view. First, we used a set of
thirteen landmarks (L; Fig. 1, Table 2) partially sensu
Monteiro & dos Reis (2005) and Duarte et al. (2000). In
a second dataset, we incorporated 31 semi-landmarks
(SL; Fig. 1) to the mentioned landmarks to represent
the mandible contour in more detail. The x, y coordi-
nates of landmarks and semi-landmarks were digi-
tized using TPSDIG, version 2.12 (Rohlf, 2008). L and
SL coordinates have been deposited at http://
datadryad.org/repo.

To remove differences in location, orientation, and
scaling (i.e. nonshape variation) of the landmark and
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semi-landmark coordinates we performed generalized
Procrustes analyses (Rohlf & Slice, 1990; Mittero-
ecker & Gunz, 2009) for both L and SL. Semi-
landmarks were slid along vectors tangent to the
respective curves using the minimum bending energy
criterion (Bookstein, 1997; Mitteroecker & Gunz,
2009). Sliding semi-landmarks represent an exten-
sion of the generalized Procrustes analyses: after
removing nonshape variation, the semi-landmarks
are aligned to diminish the variation tangential to the
represented curve.

MULTIVARIATE ANALYSIS

Principal component analyses [relative warps (RW)
analyses] of consensus configurations of both L and
SL for each genus were performed (RW scores are
available at http://datadryad.org/repo). The principal
components (i.e. RW) summarize and describe the
major trends in mandible shape variation among
genera and facilitate the visualization of shape ordi-
nation in a low-dimensional morphospace. Differences
in shape among caviomorph genera were described in
terms of the variation in deformation grids (Book-
stein, 1991). The morphometric analyses were per-
formed using TPSRELW, version 1.46 (Rohlf, 2008).

The ordinations produced by the two datasets, L
and SL, were compared using Procrustes analysis
(PROTEST; Gower, 1971; Peres-Neto & Jackson,

Table 1. Taxa studied, number of specimens examined
(N), and habits

Taxon N Habits

Cavioidea
Caviidae

Cavia aperea 8 Epigean*
Microcavia australis 11 Fossorial*
Galea leucoblephara 8 Epigean*
Galea sp. 2 Epigean*
Dolichotis patagonum 10 Epigean*
Pediolagus salinicola 4 Epigean*
Hydrochoerus hydrochaeris 4 Epigean*

Dasyproctidae
Dasyprocta sp. 10 Epigean*

Chinchilloidea
Chinchillidae

Chinchilla sp. 5 Epigean†
Lagidium viscacia 10 Epigean†
Lagostomus maximus 10 Fossorial*

Octodontoidea
Ctenomyidae

Ctenomys australis 9 Subterranean‡
Echimyidae

Myocastor coypus 10 Epigean*
Proechimys guyannensis 4 Epigean‡

Octodontidae
Aconaemys porteri 3 Fossorial‡
Aconaemys sagei 1 Fossorial‡
Octodontomys gliroides 7 Fossorial‡
Octodon degus 2 Fossorial‡
Octodon bridgesi 4 Fossorial‡
Spalacopus cyanus 4 Subterranean‡

Systematics sensu Woods & Kilpatrick (2005) and
Dunnum & Salazar-Bravo (2010). Definition of habit cat-
egories sensu Lessa et al. (2008).
*Nowak (1991).
†Spotorno et al. (2004).
‡Lessa et al. (2008).

Figure 1. Landmarks (dark gray points) and semi-
landmarks (light gray points) used in the present study
(for description, see Table 2).

Table 2. Description of mandible landmarks

Landmark Definition

1 Antero-dorsal border of incisor alveolus
2 Extreme of diastema invagination
3 Anterior end of mandibular toothrow
4 Anterior end of base of coronoid process
5 Tip of coronoid process
6 Maximum curvature of incisura

mandibulae
7 Anterior edge of condylar process
8 Posterior-most edge of postcondyloid

process
9 Maximum curvature of curve between

postcondyloid process and angular
process

10 Tip of angular process
11 Posterior-most point on ventral border of

mandibular corpus
12 Posterior extremity of mandibular

symphysis
13 Antero-ventral border of incisor alveolus

Definitions taken from Monteiro & dos Reis (2005), except
for the landmarks 4 and 8 (this work), and for the land-
mark 11 (Duarte et al., 2000).
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2001). We scaled and rotated the ordinations for all
RW and for the first two RW, using a minimum
squared differences criterion. A permutation proce-
dure (PROTEST; 10 000 permutations) was used to
assess the statistical significance of the Procrustean
fit (Peres-Neto & Jackson, 2001). This analysis was
carried out using VEGAN (Oksanen et al., 2010) for R
2.9.1 (R Development Core Team, 2009).

PHYLOGENETIC COMPARATIVE METHODS

The influence of phylogeny on patterns of shape
variation was evaluated by calculating the phyloge-
netic signal of the first three RW obtained for L and
SL. We calculated the commonly used K-statistic pro-
posed by Blomberg et al. (2003). Blomberg’s K pro-
vides a measure of the strength of phylogenetic signal
of the data: values near 0 indicate a lack of signal,
and values around 1 are expected for a character
evolved under the Brownian motion model (Blomberg
et al., 2003). Statistical significance of K was assessed
via permutation tests with 9999 replications. Phylo-
genetic relationships among genera were obtained
from the maximum-likelihood trees generated by
Huchon & Douzery (2001), Rowe & Honeycutt (2002),
Honeycutt, Rowe & Gallardo (2003), and Ledesma
et al. (2009) using von Willebrand Factor, growth
hormone receptor, transthyretin, mitochondrial 12S
rRNA and cytochrome b gene markers (Fig. 2). Analy-
ses were conducted using PICANTE package for R
(Kembel et al., 2010).

To evaluate the influence of ecology on mandible
shape variation, we fitted a habit dummy variable
(i.e. subterranean, fossorial, and epigean habits;
sensu Lessa et al., 2008) to the first three RW scores
together (approximately 75% of total variance) and to
each one separately, using a phylogenetic generalized
least square regression model (Martins & Hansen,
1997; Rohlf, 2001), which is suitable for dealing with
phylogenetic non-independence in comparative data
(Rohlf, 2001; Garland et al., 2005). This regression
model takes the form: Y = XB + e, where Y is the
dependent variable (i.e. RW scores describing shape
variation), X is the predictor variable (i.e. habits), B is
the matrix of partial regression coefficients, and e is
the error term that has a covariance matrix derived
from the phylogenetic tree (Rohlf, 2001). This analy-
sis was carried out using the APE for R (Paradis,
Claude & Strimmer, 2004).

RESULTS

The percentage of variation explained by the first
three relative warps was similar for L and SL
datasets (approximately 45%, 18%, and 11% for RW1,
RW2 and RW3, respectively). The PROTEST analyses
showed high and significant correlations between
these datasets, both for all RW and for the first two
RW (r = 0.99; P < 0.001 for both analyses). We
obtained similar ordinations using L (Fig. 3A) and
SL (Fig. 3B). Most cavioids (except for Dasyprocta)
were located on the right side of the graph, whereas

Figure 2. Phylogenetic relationships of South American caviomorph rodents included in the present study. Superfamilial
to subfamilial clades are indicated. Topology sensu Huchon & Douzery (2001), Rowe & Honeycutt (2002), Honeycutt et al.
(2003), and Ledesma et al. (2009).

CAVIOMORPH MANDIBLE SHAPE 831

© 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102, 828–837

D
ow

nloaded from
 https://academ

ic.oup.com
/biolinnean/article-abstract/102/4/828/2450644 by guest on 09 O

ctober 2019



octodontoids (except for Myocastor) were situated
mainly on the left side of the morphospace. Chinchil-
loids showed intermediate positions. In addition,
within cavioids, Dolichotis and Pediolagus (Caviidae,

Dolichotinae) were separated from the rest of caviids
(Caviinae and Hydrochoerinae), which is consistent
with previous hypotheses on the phylogenetic rela-
tionships among these clades (Vieytes, Verzi & Vucet-
ich, 2001; Woods & Kilpatrick, 2005; Pérez, 2010).
Similarly, the chinchillids Chinchilla and Lagidium
clustered apart from Lagostomus, which is in agree-
ment with the recognition of the Chinchillinae and
Lagostominae subfamilial clades within Chinchillidae
(McKenna & Bell, 1997; Spotorno et al., 2004).

RW1 was associated with the general robustness of
the mandible (Fig. 4). The genera on the left side of
the graph (i.e. most of the octodontoids) presented
high coronoid process (relative height of landmark 5
with respect to the occlusal plane defined by land-
marks 3 and 4) and mandibular condyle (idem for
landmark 7), along with well developed areas for
insertion of masseteric muscles (defined by land-
marks 4, 6, 9, and 11), shorter and deeper diastema
(defined by landmarks 1, 2, 12, and 13), and deeper
horizontal mandibular ramus (depth of landmark 12
with respect to the occlusal plane defined by land-
marks 3 and 4). The genera on the right side of the
graph (i.e. most of the cavioids) showed opposing
characteristics, as well as a more enlarged, backward
and ventrally directed angular process. RW2 was
associated with differences in the development of the
coronoid process and angular process (see Supporting
information, Fig. S2).

The shape of the caviomorph mandible showed
a clear phylogenetic signal (Fig. 3, Table 3). RW1
showed a statistically significant phylogenetic signal
for both L and SL, whereas RW2 showed a phy-
logenetic signal only for SL. RW3 did not show
any significant signal. The L dataset showed the
weakest phylogenetic signal, reflected in its having
significant signal for RW1 only, with a value
of K below of 1, indicating lower phylogenetic
dependence.

Regressions of mandible shape (first three RWs for
L and SL; Table 4) on the habit dummy variable (i.e.
subterranean, fossorial, and epigean habits) yielded

Figure 3. Ordination of the 17 caviomorph genera in the
morphospace defined by the first two relative warps (RWs).
Landmark analysis (A) and semi-landmark analysis (B).
Cav, Cavia aperea; Micro, Microcavia australis; Gal,
Galea; Hydro, Hydrochoerus hydrochaeris; Dol, Dolichotis
patagonum; Pedio, Pediolagus salinicola; Chi, Chinchilla;
Lagi, Lagidium viscacia; Lago, Lagostomus maximus;
Octs, Octodontomys gliroides; Spal, Spalacopus cyanus;
Aco, Aconaemys; Oct, Octodon; Cte, Ctenomys australis;
Myo, Myocastor coypus; Proe, Proechimys guyannensis.
Triangles, epigean habits; circles, fossorial habits; squares,
subterranean habits.

Table 3. Blomberg’s K statistic indicating phylogenetic
signal for the first three relative warps (RW) for landmark
(L) and landmark plus semi-landmark (SL) datasets

Dataset K P

L RW1 0.944 0.005
RW2 0.719 0.073
RW3 0.529 0.260

SL RW1 1.021 0.003
RW2 0.854 0.011
RW3 0.614 0.127
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some interesting results. The regression analysis of L
indicated a lack of significance of habit to explain
shape variation. Alternatively, the regression analysis
of SL showed marginally significant relationship
between mandible shape and habit (Table 4).

DISCUSSION

One of the major advantages of geometric morpho-
metric techniques is the possibility of analyzing, in a
detailed manner, the shape of complex structures and
their variation. In the present work, we used two
geometric morphometric datasets: one comprising
landmark coordinates and a second one formed by
landmark plus semi-landmark coordinates. Although
no large differences could be observed among ordina-
tion scatterplots of caviomorph genera, the incorpo-
ration of a greater amount of shape information in the
landmarks plus semi-landmarks dataset allowed the
recovery of a significant relationship between RWs
and the habit variable (i.e. between mandible shape
and ecology), which appeared as nonsignificant when

the landmark dataset was used. Thus, variation in
habits would be reflected by both the relative position
of anatomical points, and by the functional informa-
tion contained in the curves delimited by semi-
landmarks, which is lost in landmark analyses.

As expected given the high taxonomic levels ana-
lyzed, the main morphological differences that could
be observed among caviomorph genera corresponded
to variation in the most conspicuous traits of the
mandible. The ordination of genera showed clear
phylogenetic signal given that representatives from
each caviomorph superfamilies, and even lower-level
clades (i.e. subfamilies), clustered together in the
morphospaces, rather than with other genera that
share similar habits, as would be expected (Samuels,
2009). Each clade exhibited a particular combination
of morphological features: most cavioids had a
shallow mandible, long and slender distema, low coro-
noid and condylar processes, and backward and ven-
trally projected angular process. Most octodontoids
showed opposing features, whereas chinchilloids
exhibited intermediate morphologies (i.e. shallow
mandible in combination with high coronoid and

Figure 4. Mandible shape changes along the first relative warp (RW1), from negative (-) to positive (+) values, shown
as deformation grids. A, analysis of landmarks. B, analysis of landmarks plus semi-landmarks.

Table 4. Statistics for the relationship between mandible shape [first three relative warps for both landmark (L) and
landmark plus semi-landmark (SL) datasets] and habits assessed through a phylogenetic generalized least square
regression model

Dataset

Univariate Multivariate

R2 F P l F P

L 0.062 0.463 0.639 0.866 0.198 0.993
SL 0.055 0.410 0.671 0.256 2.433 0.033
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condylar processes). Myocastor and Dasyprocta were
exceptions to this pattern. Myocastor is an octodon-
toid (Echimyidae) that differed from the remaining
octodontoid genera because of its very deep anterior
mandibular corpus, highly reduced coronoid process,
and backward extended angular process. Dasyprocta
is a basal cavioid (Dasyproctidae) that showed deeper
mandible and diastema than the other cavioids,
in conjunction with high coronoid and condylar
processes. Condylar and coronoid processes rising
above the level of the tooth row represent a general-
ized condition for caviomorphs and even for rodents
(Wood, 1949; Korth, 1994). Beyond this, adaptive or
phylogenetic causes leading to morphological diver-
gence of these taxa are still unclear.

By contrast to our expectation, phylogenetic con-
straints were more important than ecological factors
for explaining morphological variation. This result
contrasts with previous studies performed at specific
and generic levels within the octodontoid family
Echimyidae (Perez et al., 2009), where a significant
association between craniomandibular morphology
and ecological heterogeneity was detected. South
American caviomorphs are ecologically diverse, and
so we would have expected ecological factors to be
more relevant than the phylogenetic pattern for
explaining morphological variation, as observed at
low phyogenetical hierarchies (Polly, 2001; Perez
et al., 2009). The strong association between morpho-
logical variation and phylogenetic relationships could
be explained by the long evolutionary history of cavi-
omorphs, and the early divergence of superfamilial
clades (early Oligocene; Flynn et al., 2003; Opazo,
2005; Sallam et al., 2009; Vilela et al., 2009; Vucetich
et al., 1999, 2010b). The oldest fossils representing
such divergence are fragmentary. Nevertheless, dis-
tinctive mandibular traits of each superfamily, as for
those examined in the present study, are recorded at
least since the early Miocene (Scott, 1905; Vucetich
& Verzi, 1996; Pérez, 2010; Vucetich, Kramarz &
Candela, 2010a). This pattern of early establishment
of the major pathways of specialization in the man-
dible of caviomorphs would explain the observed
strong phylogenetic influence on the morphological
variation of this structure.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article:

Figure S1. Lateral view of mandible of caviomorph rodents analyzed. A, Lagostomus; B, Lagidium; C,
Chinchilla; D, Dasyprocta; E, Dolichotis; F, Pediolagus; G, Aconaemys; H, Octodon; I, Ctenomys; J, Cavia; K,
Microcavia; L, Galea; M, Octodontomys; N, Spalacopus; O, Proechimys; P, Myocastor; Q, Hydrochoerus. Scale
bar = 1 cm.
Figure S2. Mandible shape changes along the second relative warp (RW2), from negative (-) to positive (+)
values, shown as deformation grids. A, analysis of landmarks; B, analysis of landmarks plus semi-landmarks.
Appendix S1. Detailed list of specimens included in the present study.

Please note: Wiley-Blackwell are not responsible for the content or functionality of any supporting materials
supplied by the authors. Any queries (other than missing material) should be directed to the corresponding
author for the article.
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