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Abstract

We present a non-perturbative regularization scheme for Quantum Field Theories which amounts to an embedding of the
original unregularized theory into a spacetime with an extra compactified dimension of length L ∼ Λ−1 (with Λ the ultraviolet
cutoff), plus a doubling in the number of fields, which satisfy different periodicity conditions and have opposite Grassmann
parity. The resulting regularized action may be interpreted, for the fermionic case, as corresponding to a finite-temperature
theory with a supersymmetry, which is broken because of the boundary conditions. We test our proposal both in a perturbative
calculation (the vacuum polarization graph for a D-dimensional fermionic theory) and in a non-perturbative one (the chiral
anomaly).

 2002 Elsevier Science B.V.

1. Introduction

When a classical symmetry cannot be preserved by any regularization method, this manifests itself as an
anomaly [1], an important phenomenon which is perhaps best understood in the context of the path integral
method [2,3]. For the case of the chiral symmetry, the importance of the anomalies, should hardly need to
be emphasized, since they put constraints for model-building, and they modify the naive predictions of current
algebra [4].

A non-perturbative regularization (like the lattice) makes it possible to use approximation methods whose
application to the usual perturbative context is problematic. On the other hand, a non-perturbative regularization,
to be useful, should preserve as many symmetries as possible, and they should be realized on a local regularized
action. In the case of theories with anomalies, the construction of a non-perturbative regularization is a non-trivial
task since, by definition, a regularization introduces a major change in the short distance properties of the theory,
precisely the region where theories with anomalies are most sensitive.

In this Letter we present a non-perturbative regularization method formulated in terms of a higher-dimensional
extension of the model, at finite-temperature. The original fields have to be immersed in a spacetime with an extra
finite dimension; for the fermionic case a supersymmetry is trivially implemented by a doubling in the number of
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degrees of freedom, adding to each physical field an unphysical partner which is Grassmann even, but has the same
action as the fermion.1 This supersymmetry is, however, broken because of the boundary conditions in the extra
coordinate, whose length is of the order of the inverse of the UV momentum cutoff. Moreover, the non-anomalous
symmetries of the theory are manifest.

The method may be understood as an implementation of the ideas developed in [5,6], namely, the use of an
infinite number of Pauli–Villars regulators [7,8]. Our main point is to give a concrete realization of the regularized
action in terms of an action, which should then have a compactified coordinate for the masses of the regulator fields
to emerge naturally as the corresponding discrete momenta.

For the bosonic case, the extension requires the addition of a bosonic partner with a negative sign in the quadratic
part of its Euclidean action, like in the standard Pauli–Villars method, when applied to a (bosonic) scalar field
theory [8]. This means that, in the canonical quantization framework, the norm of the corresponding modes must
be negative, to avoid negative energies. Besides, the regulator field has anti-periodic boundary conditions in the
imaginary time direction.

The use of higher-dimensional representations for fermionic determinants is a well-known idea; indeed it is
the basis of the celebrated ‘overlap’ formalism [9], based on Kaplan’s idea [10] to represent a D-dimensional
chiral determinant by a D + 1 Dirac theory with a non-homogeneous mass. However, our motivation here is to
find a representation of the regularized fermionic determinant in the continuum. The compact length for the extra
dimension makes it also possible to use a Matsubara-like formalism as in finite-temperature QFT. In this setting,
the finiteness of the regularized action results from the fact that at finite-temperature the UV divergencies are the
same as for T = 0, in combination with the property that the zero-temperature limit of the regularized theory is
trivial: for the fermionic case, the supersymmetry is exact at T = 0, while for the bosonic case there is no effective
propagation in that limit.

The organization of this Letter is as follows: we first define the regularization by a study of the particular case
of a Dirac operator determinant. We then extend the method to a bosonic QFT and perform a perturbative test on
the method. The (non-perturbative) issue of chiral anomalies is also discussed.

2. Fermionic theory

We begin with the particular case of a fermionic determinant in an external gauge field, which, as we shall see,
serves both as motivation and test for the method. To this end, we first introduce the partition function Zf (A) for
the unregularized theory, which is defined by:

(1)Zf (A) =
∫

Dψ Dψ̄ exp
[−Sf (ψ̄,ψ;A)

]
,

where Sf denotes the unregularized Euclidean action for a massless Dirac field in D dimensions, i.e.,

(2)Sf (ψ̄,ψ;A) =
∫

dDx ψ̄ Dcψ,

where Dc = /∂ + /A, and the Hermitian γ matrices satisfy the relation {γµ, γν} = 2δµν . The gauge connection A

verifies

(3)Aµ = −A†
µ ≡

{
iAµ, in the Abelian case,
Aa

µτa, in the non-Abelian case,

1 Of course, this means that the unphysical field violates the spin-statistics theorem, as a Pauli–Villars regulator does.
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where τa are (anti-Hermitian) generators of the Lie algebra of the non-Abelian gauge group, and both Aµ and Aa
µ

are real. This implies the anti-Hermiticity of Dc in Euclidean space, a property that will be taken into account for
the construction of the regularized theory.

To introduce the non-perturbative regularization, we define a ‘regularized’ Dirac operator D, a function of the
unregularized operator Dc, through the equation

(4)
iD
M

= f

(
iDc

M

)
,

where M is a constant with the dimensions of a mass, playing the role of an UV cutoff and the function f has to
be chosen in order to tame the UV behaviour of the Dirac operator. Since the UV properties manifest themselves
in the large eigenvalues of Dc , when considered as a function of a real variable x , f : R → R should verify

(5)x → 0 ⇒ f (x) ∼ x, x → ±∞ ⇒ f (x) → ±1.

Note that the first relation amounts to requiring the regularized operator to behave like the unregularized one when
the eigenvalues are small, while the second condition implies that D is bounded. Indeed, the spectrum of D is
confined to the range [−M,M]. Besides, the function f should be one to one, in order to preserve some important
properties of the spectrum, as the degeneracy of each eigenvalue. A convenient choice for f satisfying all of these
constraints is:

(6)
iD
M

= tanh
(

iDc

M

)
,

which, of course, would yield a non-local theory if D were used to build a D-dimensional theory. Rather than
working with this non-local expression, we shall instead consider an equivalent formulation of this regularized
theory where the non-locality is traded for the existence of a compactified extra dimension, plus an extra unphysical
field. A first step in that direction is to use an infinite product representation for the tanh function,

(7)tanh(x) = ξx

∞∏
n=1

x2 + n2π2

x2 + (n − 1
2 )

2π2
,

where ξ = ∏∞
n=1(1 − 1

2n)
2. By the use of some straightforward algebra, we may insert (7) in (6) to write the

regularized Dirac operator as:

(8)D = ξ

+∞∏
n=−∞

[ Dc + πnM

Dc + (n + 1
2 )πM

]
,

a form which already suggests the use of a higher-dimensional representation and the introduction of fields of
opposite statistics to obtain a local version of the determinant of D. Indeed, we note that the regularized partition
function Z reg

f , defined in terms of D, may be written as follows:

(9)Z reg
f =

∫
Dψ Dψ̄ exp

[
−

∫
dDx ψ̄ Dψ

]
= exp

+∞∑
−∞

{
Tr ln

[
Dc + πnM

] − Tr ln
[
Dc +

(
n + 1

2

)
πM

]}
.

It should be evident that the sum over n of the D-dimensional traces may also be interpreted as (D + 1)-
dimensional traces for a finite-temperature theory, in the Matsubara formalism, and with translation invariance
along the imaginary time coordinate. In this finite-temperature language, we have β = 2/M (or T = M/2) and
the two operator traces are associated with two fields with opposite (odd/even) Grassmann character which have
to be integrated with opposite (periodic/anti-periodic) boundary conditions. Indeed, the two fields can be naturally
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associated to the Matsubara frequencies:

(10)ω(+)
n = 2π

β
n = πnM, ω(−)

n = 2π
β

(
n + 1

2

)
= π

(
n + 1

2

)
M,

where ω
(+)
n and ω

(−)
n correspond to periodic and anti-periodic boundary conditions, respectively. According to this

interpretation, we may then write the partition function as a functional integral over two Dirac fields in D + 1
dimensions, Ψ (+)(τ, x) and Ψ (−)(τ, x), associated to the two different types of boundary conditions (bc) and with
opposite Grassmann character,

Ψ (+)(τ, x): periodic bc, Grassmann odd,
Ψ (−)(τ, x): anti-periodic bc, Grassmann even.

The resulting partition function reads

(11)Z reg
f =

∫
DΨ (+)DΨ (−)DΨ̄ (+)DΨ̄ (−) exp

[−Sreg
f

(
Ψ̄ (+), Ψ̄ (−),Ψ (+),Ψ (−);A)]

,

with

(12)Sreg
f =

+1/M∫
−1/M

dτ

∫
dDx

[
Ψ̄ (+)(−i∂τ +Dc)Ψ

(+) + Ψ̄ (−)(−i∂τ +Dc)Ψ
(−)

]
.

Notice that the integration rules associated with Ψ (+) coincide with those to be imposed on ghosts in finite-tem-
perature gauge theories. In this sense, one could think on conditions imposed to Ψ (−) as those corresponding to
ghosts of ghosts.

Concerning action (12), it should be noted that it is not covariant when considered as a (D + 1)-dimensional
object. This is not a problem, of course, since real physics corresponds to D dimensions, where the theory is indeed
invariant. Besides, the fact that there is a finite range for the imaginary time τ coordinate already breaks (explicitly)
the symmetry between τ and the remaining D coordinates, denoted collectively by x . This breaking is a usual
phenomenon in finite-temperature QFT, and may be traced to the fact that there is a preferential reference system,
namely, the ‘thermal bath’. However, had the original theory been defined on an even number of dimensions, i.e.,
D = 2n, the corresponding Hermitian chirality matrix γs (γs = γ5 when D = 4) could have been used in order to
obtain an equivalent (D + 1)-invariant looking expression for the Lagrangian. Indeed, it is sufficient to note that,
both for Ψ (+) or Ψ (−), we have

(13)Ψ̄ (−i∂τ +Dc)Ψ = Ψ̄ (−iγs)iγs(−i∂τ + /D)Ψ ≡ Ψ̃ ΓαDαΨ,

where, in the last line, the index α runs from 0 to D, and we shall alternatively use the notation τ or xD for the
extra coordinate, depending on the context. We have introduced the Dirac matrices Γα in D + 1 dimensions in such
a way that Γµ = iγsγµ, ∀µ such that 0 � µ � D − 1, and ΓD ≡ Γτ ≡ γs .

Of course, Γ †
α = Γα , and

(14){Γα,Γβ} = 2δαβ, ∀α,β = 0,1, . . . ,D.

Also, the α = D component of Aα vanishes. In the last line of (13) we have used the notation Ψ̃ ≡ Ψ̄ iγs = Ψ †Γ0,
i.e., Ψ̃ is the natural definition for Ψ̄ in the D + 1 covariant representation. With this in mind, we shall often write
also Ψ̄ (rather than Ψ̃ ) when working in the D + 1 covariant representation, since the meaning of the bar should
be clear from the context.

The changes to introduce when the original theory is massive are quite straightforward, since they stem from
the replacement Dc →Dc + m, where m is the fermion mass, in (4). However, when the D + 1 covariant notation
is used, we note that the physical mass m will arise as a constant gauge potential Aτ = im in the extra coordinate,
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namely,

(15)Sreg
f (m) =

∫
dD+1x

[
Ψ̄ (+)ΓαDα(m)Ψ (+) + Ψ̄ (−)ΓαDα(m)Ψ (−)

]
,

where dD+1x ≡ dτ dDx , and Dτ ≡ ∂τ + im. The fact that the τ coordinate is compact implies that the constant m
cannot be gauged away, unless a twist is introduced for the fermions. This twisting would carry, of course, the same
physical content as the constant gauge field.

The regulated Lagrangian in D + 1 dimensions is supersymmetric, in the sense that it is invariant under the
global transformations:

(16)δΨ (+) = iξΨ (−), δΨ (−) = iξΨ (+),

where ξ is a real Grassmann variable. One should expect that this symmetry is broken because of the different
boundary conditions for the (+) and (−) fields.

We conclude this section with an alternative (also finite-temperature) representation for the regularized
fermionic determinant. It should be evident that the logarithm of the regularized partition function (11), may also
be written in terms of traces over anti-periodic fields, namely

(17)lnZ reg
f = Tr(−) ln

[
ΓD

(
∂τ + i

π

β

)
+ ΓµDµ

]
− Tr(−) ln[ΓD∂τ + ΓµDµ],

where the (−) over the traces indicates that for both fields it is anti-periodic, while the periodicity for the first term
has been traded for the presence of a constant gauge field. This may also be written in the equivalent way:

(18)lnZ reg
f =

π/β∫
0

da
∂

∂a
Tr(−) ln[ΓαDα(a)],

where

(19)Dµ(a) = Dµ, DD(a) = ∂τ + ia.

By taking the derivative with respect to a, in (18), we see that the equation becomes an integral over a of the
thermal average of the conserved charge Q(a), corresponding to the (D + 1)-dimensional current for a (single)
Dirac fermion. Namely,

(20)lnZ reg
f =

π/β∫
0

da Tr(−)
[
iΓτ

(
ΓαDα(a)

)−1] =
π/β∫
0

da 〈Q(a)〉,

where the charge Q(a) depends of course on the value of the constant a and on the external field Aµ(x). When D

is even, it is interesting to see that 〈Q(a)〉 may be decomposed into its parity breaking and parity conserving parts,
yielding the same decomposition for the D-dimensional regularized effective action.

When M → ∞ (β → 0), we see that 〈Q(a)〉 becomes just the charge corresponding to the Chern–Simons
current in D + 1 dimensions, thus reproducing the well-known relation between gauge topological terms in even
and odd dimensions. It is amusing to see that this regularization somehow preserves a relation like that, even when
the theory is regulated.

When the original theory is massive, the only change is in the integration range for the a integral in (20), i.e.,

(21)lnZ reg
f (m) =

π/β+m∫
m

da 〈Q(a)〉.
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3. Bosonic theory

Let us adapt here the previously introduced idea to the case of a bosonic action. We take as the essential property
of the method to preserve by such a generalization, not the functional relation between two Dirac operators, but
rather the finite-temperature interpretation. Indeed, the latter is a framework that can be implemented for any model,
regardless of the spin and internal symmetry group of the fields, and its precise realization may be inferred from
the Pauli–Villars method, by introducing the proper generalization.

To be more precise, we consider a real scalar field ϕ in D Euclidean dimensions, described by the action:

(22)SD =
∫

dDx

[
1
2
∂µϕ∂µϕ + 1

2
m2ϕ2 + V (ϕ)

]
.

Guided by the fermionic case, we introduce now two scalar fields Φ(±)(τ, x) and a finite-temperature action (with
β = 2/M) in D + 1 dimensions, with periodic boundary conditions for the field Φ(+)(τ, x):

(23)Φ(+)(τ, x) = β−1/2
+∞∑

n=−∞
Φ(+)

n (x)eiω
(+)
n τ ,

where ω
(+)
n = 2πn

β
and

(24)Φ(+)
n (x) = β−1/2

+β/2∫
−β/2

dτ Φ(+)(τ, x)e−iω
(+)
n τ

and anti-periodic boundary conditions for Φ(−).
In particular, the zero mode of Φ(+)(τ, x) is assumed to be proportional to ϕ(x), i.e.,

(25)Φ
(+)
0 (x) = β−1/2ϕ(x).

On the other hand, inspired by the Pauli–Villars method in its scalar field version [8], we may introduce the
regularized action SD+1 as follows:

(26)

SD+1
[
Φ(+),Φ(−)

] =
+1/M∫

−1/M

dτ

∫
dDx

{
1
2
[
∂Φ(+)∂Φ(+) + m2Φ(+)Φ(+)

]

− 1
2
[
∂Φ(−)∂Φ(−) + m2Φ(−)Φ(−)

] + V
(
Φ(+) + Φ(−)

)}
.

Since there is no free propagator connecting Φ(+) to Φ(−), an application of the Wick theorem to a given
Green’s function yields the result that any diagram in the perturbative expansion can be built in the following way:
replace in every diagram of the unregularized theory the free propagator by the sum of the propagator for Φ(+)

and the propagator for Φ(−) (which differ in a global sign and in their boundary conditions). Thus the ‘regularized
propagator’ Greg is

(27)Dreg = 〈
Φ(+)Φ(+)

〉 + 〈
Φ(−)Φ(−)

〉
.

Taking into account the different boundary conditions and the minus sign in front of the (−) action, we
see that in momentum space the sum of the propagators becomes, at large momenta, exponentially damped.
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Namely,

(28)Dreg(k) ∼ exp
[−β|k|].

This explains the finiteness of the theory; we also need to be sure that the unregularized theory is recovered
when M → ∞. This property is indeed also true, since in this limit the anti-periodic fields Φ(−) become infinitely
massive, as well as all the non-zero modes of Φ(+). Thus the theory is dimensionally reduced to the zero Matsubara
frequency mode, which, by construction, is tantamount to ϕ(x), and of course has the original action SD .

4. A perturbative test

Let us now apply the regularization method to the 1-loop D-dimensional vacuum polarization. The regularized
vacuum polarization function Π̃µν can be written as the difference between the contributions corresponding to
periodic and anti-periodic boundary conditions. Besides, the gauge field is independent of the τ coordinate, thus

(29)Π̃µν(k) =
∫

dDp

(2π)D

[
t(+)
µν (p, k) − t(−)

µν (p, k)
]
,

where

(30)t(±)
µν (p, k) =

+∞∑
n=−∞

tr
[

1

i/p + ω
(±)
n

γµ

1

i(/p + /k) + ω
(±)
n

γν

]

and we have used the non-covariant expression for the Dirac matrices. Of course, since there is no physical gauge
field component corresponding to α = D, we shall not evaluate the components of Π̃αβ involving that index.
A similar remark holds true for the independence of the external field on τ , what allows us to set all the external
Matsubara frequencies equal to zero.

Evaluating the Dirac traces for t
(±)
µν , we see that

(31)t(±)
µν (p, k) = tr(I )

+∞∑
n=−∞

−pµ(p + k)ν − pν(p + k)µ + [p · (p + k) + ω
(±)
n ]δµν

(p2 + (ω
(±)
n )2)[(p + k)2 + (ω

(±)
n )2]

,

where tr(I ) denotes the trace over the identity matrix in Dirac space.
It should be remembered, before integrating out the momenta p, that the regularization works only if both the

(+) and (−) contributions are taken into account inside the integrand, i.e., the integral cannot be distributed (as in
the Pauli–Villars method). This requires the knowledge of sums over frequencies which are not the standard ones
of the Matsubara formalism, but rather objects defined as follows:

(32)σ(f ) ≡
+∞∑

n=−∞

[
f (n) − f

(
n + 1

2

)]
.

By the same kind of trick applied in the Matsubara formalism, we may express the series (32) as a complex contour
integral,

(33)σ(f ) = 1
i

∮
C

dz
f (z)

sin(2πz)
,

where C is the curve shown in Fig. 1.
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Fig. 1. The curve C used in the integral (33).

Performing the sums over frequencies according to this rule, we end up with an expression for Π̃µν(k), which
may be written as follows:

Π̃µν(k) = β tr(I )
∫

dDp

(2π)D

1
(p + k)2 − p2

(34)

×
{[

1
|p| sinh(β|p|) − 1

|p + k| sinh(β|p + k|)
][−pµ(p + k)ν − pν(p + k)µ + p · (p + k)δµν

]
−

[ |p|
sinh(β|p|) − |p + k|

sinh(β|p + k|)
]
δµν

}
,

where the UV convergence of the integral over p is evident (the symbol |p| denotes the D-dimensional Euclidean
norm).

The finite-temperature regularization is gauge invariant for gauge transformations in the D-dimensional space.
This implies the (D-dimensional) transversality of the Π̃µν tensor, kµΠ̃µν = 0. We may then write Π̃µν(k) as
follows:

(35)Π̃µν(k) = Π̃(k)

(
δµν − kµkν

k2

)
.

Taking into account (35) and (34), and performing shifts in the integration variables, we note that

(36)Π̃(k) = 2β tr(I )
D − 1

∫
dDp

(2π)D

(D − 2)(|p| + k · p̂) − Dp

(k2 + 2k · p) sinh(β|p|) ,

which is a finite scalar function of k for any value of D. The UV behaviour of the integrand is of course the same
as in [6]. It should be clear from our starting point (6), that convergence will be achieved for all orders, and not just
for the diagram quadratic in the external field.

5. The chiral anomaly

We shall restrict ourselves to the case of a massless fermion in an even number of dimensions, in order to
observe the emergence of the chiral anomalies in this context. Since the finite-temperature regularization introduces
an extra dimension into the game, it is not at all obvious whether the original chiral symmetry is still meaningful
or not. It is however, easy to see that there is, indeed, a symmetry transformation which corresponds to the chiral
transformations when the regulator is removed. They are however non-local on a scale of the order of M , and may
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be written as follows:

δΨ (±)(τ, x) = iαΓD(ΓµDµ − ΓD∂D)−1ΓνDνΨ
(±)(τ, x),

(37)δΨ̄ (±)(τ, x) = iαΨ̄ (±)(τ, x)ΓνDν(ΓµDµ − ΓD∂D)−1ΓD.

When M → ∞, the fields are dimensionally reduced and τ -independent. The transformations reduce of course
to the standard ones, since the ∂D = ∂τ operator yields zero when acting on a dimensionally reduced field. When M

is finite, they have of course a more complicated-looking expression, but nevertheless they leave the regularized
action invariant.

There is an effect on the integration measure: we have a super-Jacobian, which is non-vanishing because of
the different boundary conditions (otherwise, the (+) and (−) contributions would cancel). Indeed, under the
transformations (37), the functional integration measure

(38)Dµ ≡DΨ (+)DΨ (−)DΨ̄ (+)DΨ̄ (−)

transforms as follows:

(39)Dµ → DµJ ,

where

(40)
lnJ = −iα

{
Tr

[
ΓD(ΓµDµ − ΓD∂D)−1ΓνDν

](+) + Tr
[
ΓνDν(ΓµDµ − ΓD∂D)−1ΓD

](−) − (+) → (−)
}
,

where the (±) indicates whether the corresponding trace has to be taken on the space of symmetric or anti-
symmetric functions. A simple algebra shows that:

(41)lnJ = −iα
{
Tr

[
ΓD(ΓνDν)

2(ΓµDµ − ΓD∂D)−1](+) − (+) → (−)
}
,

and, since the gauge fields are independent of τ , we may evaluate the trace over the τ coordinate. This sum over
frequencies yields:

(42)lnJ = −2iα Tr
[
ΓD

βΓµDµ

sinh(βΓµDµ)

]
.

This expression may be conveniently written in a D-dimensional notation, as follows:

(43)lnJ = −2iα Tr
[
γ5ϕ

(
/D

Λ

)]
,

where:

(44)ϕ(x) = x

sinh(x)
and Λ ≡ M/2.

Now, the function ϕ(x) verifies:

(45)ϕ(0) = 1, lim
x→∞ϕ(x) = lim

x→∞ϕ′(x) = · · · = lim
x→∞ϕ(k)(x) = · · · = 0,

the conditions to be imposed to regulating functions ϕ(x) in order to give a ϕ-independent answer [2]. Then,
formula (43) is nothing but

(46)lnJ = −2iα Trγ5|reg

which then yields to the known result for the chiral anomaly [2,11]

(47)
〈
∂µj

µ
5 (x)

〉 = δ lnJ
δα(x)

∣∣∣∣
α=0

= 2i Trγ5|reg.
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We see that the choice of tanh(iDc/M) to construct D through the defining equation (4), which in turn allowed
(written as an infinite product) to the definition of the (D + 1)-dimensional finite theory corresponds, at the level
of regularized quantities, to the choice of a regulator which is close (but does not coincide) with the usual adopted
heat-kernel exp(−D2

c/M
2) or zeta-function ζ(Dc, s) regulators.

6. Conclusions and summary

In summary, we have introduced a higher-dimensional representation for regularized Dirac and scalar field
theories which preserves the symmetries of the original system, in spite of the fact that the regularization is non-
perturbative. The length of the extra coordinate may be related to a fictitious ‘temperature’, although the resulting
finite-temperature QFT has unphysical features, a property that indeed should be expected from any regularized
theory. This representation has the virtue that it automatically leads to the regulator masses one should introduce
when using an infinite number of Pauli–Villars fields, as in [6]. Moreover, it also leads to a natural extension of the
regularization to scalar field theories.

Since the method leads to a regularized action, it allows for the study of the realization of symmetries and
their corresponding anomalies. In this respect, we have discussed for the fermionic case, the interplay between
the symmetries of the original theory and the supersymmetry associated to the doubling of fields in the regulated
theory. We have studied in detail the case of chiral anomalies, showing that the regularized action is invariant under
transformations which tend to the usual chiral ones when the regulator is removed. At the quantum level, there is
a non-trivial anomalous Jacobian which, as it was to be expected, is already regulated. It should be remarked that
the symmetries of the regularized theory are non-local, a property that should be expected since it holds also for
the standard perturbatively regularized theories [12,13].
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