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Abstract. A self-consistent abundance diffusion treatment in the evolution of cooling white dwarfs permitted a
study of the effect of elemental segregation in nonadiabatic, nonradial stability computations. In particular, mode
trapping manifesting itself in cyclically varying period separations behaved differently from its appearance in the
damping/excitation rates. Another aspect of the investigation concerned the effect of heavy-element traces in
homogeneous DB white-dwarf envelopes on their pulsational instability domain. The stellar models are computed
with the CGM convection approach; the study can therefore be considered as a test of its performance in nonradial
stability analyses.
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1. Introduction

The variable white dwarfs of the various spectroscopic fla-
vors (i.e. DOV, DBV, and DAV; e.g. Gautschy & Saio
1996) belong currently to the best studied oscillating stars.
Long-term observing strategies, such as WET (Nather
1995), the seismological promises, and eventually their
successes (e.g. Kawaler 1998, and references therein) are
the pillars of the scientific progress in this field.

To seismologically interpret the rich observed
oscillation-mode spectra, adiabatic pulsation theory
proved successful (e.g. Bradley et al. 1993; Bradley 1996).
The computed adiabatic eigenmodes and in particular
the period separations between neighboring overtones
and the deviations from equi-spacing were developed into
the main diagnostic tool to infer masses and magnitudes
of the material layers in the compositionally stratified
pulsators. Frequency splittings even opened the door to
attempts to study the spatial structure of white dwarfs’
rotation profiles (Kawaler et al. 1999).

Adiabatic theory, however, cannot determine which
and the number of pulsation modes that are eventu-
ally excited and therefore at least potentially observable.
This second step requires at least nonadiabatic modeling.
For various reasons, the level of reliability of nonadia-
batic results is not as high as for the adiabatic ones. A
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major obstacle in the numerical realizations is the small
growth/damping rates found for white dwarfs’ g modes
and the close proximity to adiabaticity of the thermody-
namic processes already close to the surface.

Considering the position of the DB white dwarfs on the
Hertzsprung-Russell (HR) plane, we recognize that they
populate the same effective-temperature range – though
at much lower luminosity – as the β Cephei variables. For
the instability of the latter, the Z-bump in the OPAL/OP
opacities (e.g. Iglesias & Rogers 1996; Seaton et al. 1994)
is accepted to provide the necessary driving through the
classical κ mechanism. Despite the Z-bump getting less
pronounced at the higher densities which are relevant for
white dwarfs, it is a priori unclear if remaining traces of
heavy elements in the envelopes of cooling white dwarfs
influence the position of the blue edge of the pulsation do-
main of the DBV class. The initial question for this study
was therefore: how do heavy elements in the envelopes of
DB white dwarfs influence their pulsational stability?

As a detailed diffusion treatment of nuclear species
in the evolutionary star models became available during
this project, we extended its scope and computed various
model series to study the trapping properties of nonadia-
batic pulsation modes in DBVs with diffusively evolving
stratifications. The studied model sequences are listed in
Table 1. The nonadiabatic stability results are presented
in Sect. 3. Section 4 contains a detailed discussion, mainly
of the trapping results. We conclude the paper with a
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speculation on the longstanding problem of encountering
too many overstable linear modes as compared with the
observed oscillation spectra.

2. Methods and models

2.1. Stellar structure and evolution

The stellar-evolution code used in this work is the same
as the one employed in the recent studies of WD evolution
by Althaus & Benvenuto (1997, 2000) and Benvenuto &
Althaus (1998); it is based on the method of Kippenhahn
et al. (1967). In particular, to specify the outer boundary
conditions we carry out three envelope integrations (at
constant luminosity) from photospheric starting values in-
ward to a fitting outer mass fraction of m1/M∗ ≈ 10−16

where m1 corresponds to the first mass shell in the Henyey
scheme and M∗ is the total mass of the model. The inte-
rior solution is obtained via the canonical Henyey iter-
ation scheme as described by Kippenhahn et al. (1967).
Our stellar models were divided into ≈2000 mesh points,
most of them distributed in the outer layers. Concerning
constitutive physics, the code is based on a very detailed
and updated physical description such as OPAL radiative
opacities (Iglesias & Rogers 1996) for different metalici-
ties consistent with expectations from element diffusion.
We also consider the full-spectrum turbulence theory of
convection developed by Canuto et al. (1996) (referred
to as CGM in the following). Figure 1 shows the extent
of the outer convection zone in mass, parameterized by
q ≡ 1 −m/M∗, where m stands for the mass, as a func-
tion of effective temperature for the diffusion-free, Z = 0
DB models with 0.6 M� (sequence I6 in Table 1). The
grey area depicts the spatial evolution along the white
dwarf’s cooling track of the surface convection computed
with the CGM model. The heavy lines indicate the con-
vective boundaries as computed with an ML2 formulation
(cf. Tassoul et al. 1990) assuming a mixing length of one
pressure scale height.

The equation of state (EoS) for the low-density regime
is an updated version of that of Magni & Mazzitelli
(1979), while for the high density regime we consider
ionic contributions, Coulomb interactions, partially de-
generate electrons, electron exchange, and Thomas-Fermi
contributions at finite temperature. High-density conduc-
tive opacities and the various rates of neutrino emis-
sion (photo-, plasma-, and Bremsstrahlung neutrinos) are
adopted from the works of Itoh and collaborators (see
Althaus & Benvenuto 1997 for details).

One important aspect of the present study is the ex-
plicit accounting of the evolution of the chemical abun-
dance distribution due to diffusion processes for some of
the model sequences. We considered gravitational settling
(pressure diffusion), chemical, and thermal diffusion of
nuclear species. To this end, we adopted the treatment
for multicomponent gases presented by Burgers (1969),
thus avoiding the trace element approximation usually in-
voked in most WD studies. Radiative levitation, which is
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Fig. 1. Extent in mass of the outer convection zone in Z =
0, 0.6 M� DB white dwarf models. The grey area shows the
magnitude of the convection zone as computed with the CGM
formalism. The outer and inner convective boundaries, as ob-
tained with an ML2 computation (with a mixing length of one
pressure scale height) are drawn as heavy lines.

important to determine photospheric composition of hot
WDs was neglected. This assumption is justified since we
are interested in the chemical evolution occurring quite
deep in the star. In the context of WD evolution, the
treatment of diffusion we use here has been employed by
Iben & MacDonald (1985). Recently, it was applied by
MacDonald et al. (1999) to address the problem of car-
bon dredge-up in WDs with helium-rich envelopes and by
Althaus et al. (2001) to analyze the role played by diffu-
sion to induce thermonuclear flashes in low-mass, helium-
core WDs. To the best of our knowledge, only Dehner &
Kawaler (1995) used also non-equilibrium diffusion star
models for – in their case adiabatic – pulsation studies.

As a result of gravity, partial pressure, thermal gradi-
ents and induced electric fields (we neglect stellar rotation
and magnetic fields) the diffusion velocities in a multicom-
ponent plasma satisfy the set of diffusion equations (N−1
independent linear equations, Burgers 1969)
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dr
− ni Zi eE =

N∑
j 6=i

Kij (wj − wi)

+
N∑
j 6=i

Kij zij
mj ri −mi rj
mi +mj

, (1)

and heat flow equations (N equations)

5
2
ni kB∇T = −5

2

N∑
j 6=i

Kij zij
mj

mi +mj
(wj − wi)

−2
5
Kii z

′′
ii ri

−
N∑
j 6=i

Kij

(mi +mj)2

(
3m2

i +m2
jz
′
ij + 0.8mimj z

′′
ij

)
ri

+
N∑
j 6=i

Kijmimj

(mi +mj)2

(
3 + z′ij − 0.8 z′′ij

)
rj . (2)



A. Gautschy and L. G. Althaus: A nonadiabatic oscillation study of DB white dwarfs 143

In these equations, pi, ρi, ni, Zi and mi means, respec-
tively, the partial pressure, mass density, number density,
mean charge and mass for species i (N means the num-
ber of ionic species plus electron). The quantities T and
kB are the temperature and the Boltzmann constant. The
unknown variables are the diffusion velocities with respect
to the center of mass,wi, and the residual heat flows ri (for
ions and electrons). The electric field E has also to be de-
termined. The resistance coefficients (Kij , zij , z

′
ij and z′′ij)

are adapted from Paquette et al. (1986a). Average ionic
charges are treated following an approximate pressure-
ionization model as given by Paquette et al. (1986b) which
is sufficient for our purposes.

To complete the set of equations, we use the conditions
for a vanishing net mass flow with respect to the center of
mass∑
i

Ainiwi = 0, (3)

and vanishing electrical current∑
i

Zi ni wi = 0. (4)

In terms of the gradient in the number density we can
transform Eq. (1) to

1
ni

 N∑
j 6=i

Kij (wi − wj) +
N∑
j 6=i

Kij zij
mi rj −mj ri
mi +mj


− ZieE = αi − kB T

d lnni
dr

, (5)

where

αi = −AimH g − kB T
d lnT

dr
, (6)

with Ai, mH, and g being the atomic mass number, the
hydrogen-atom mass, and gravity, respectively. We write
the unknowns wi, ri and E in terms of the gradient of ion
densities in the form (similarly for ri and E)

wi = wgt
i −

∑
ions(j)

σij
d lnnj

dr
, (7)

where wgt
i stands for the velocity component due to gravi-

tational settling and thermal diffusion. The summation in
Eq. (7) is to be effected over the ions only. With Eqs. (2)
and (5), together with (3) and (4), we can find the com-
ponents wgt

i and σij by matrix inversions.
To find the evolution of the abundance distribution

throughout the star we solve the elemental continuity
equations. Details are given in Althaus & Benvenuto
(2000). In particular, we follow the evolution of the iso-
topes 4He, 12C, and 16O. In order to calculate the depen-
dence of the structure of our WD models on the varying
abundances self-consistently, the set of equations describ-
ing diffusion has been coupled to the evolutionary code.
After computing the change of abundances by the effect of
diffusion, they are evolved according to the requirements
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Fig. 2. Exemplary diffusive abundance evolution in a 0.6 M�
model with an initial He envelope of 6.6 × 10−4 M∗. Initial
profiles for He, C, and O are plotted with heavy lines. Later
stages are each labeled with a (log Teff = 4.454), b (log Teff =
4.275), and c (log Teff = 4.206).
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Fig. 3. Free-fall normalized Brunt-Väisälä frequencies, N̂ , for
models a, b, and c, whose composition profiles are displayed in
Fig. 2. The vertical arrows indicate the numerically inflicted
N̂-spike discussed in the text.

of convective mixing. Finally, we emphasize that radiative
opacities are calculated for metalicities consistent with the
diffusion predictions.

An example of a typical profile evolution is shown
in Fig. 2. The selected white-dwarf model has 0.6 M�
and a helium envelope of 6.6× 10−4 M∗. The initial pro-
files for He, C, and O are plotted with heavy lines hav-
ing various patterns. The profiles at evolutionary stages
around the DBV instability domain are labeled with the
letters a (at logTeff = 4.454), b (at logTeff = 4.275),
and c (at logTeff = 4.206). Figure 3 shows the corre-
sponding, free-fall normalized Brunt-Väisälä frequencies
for the three models. The diffusion-induced helium deple-
tion and carbon and oxygen enhancement in the enve-
lope leave easily recognizable traces in the Brunt-Väisälä
frequency only in model a for which this region is still
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Table 1. Model sequences used for nonadiabatic stability
analyses.

Seq. M∗/M� ∆MHe/M∗ log Teff models Z

I5 0.5 1.5(−2) 4.51–4.26 12 0
I6 0.6 1.5(−2) 4.49–4.27 30 0
I7 0.7 1.5(−2) 4.51–4.26 12 0
II 0.6 1.5(−2) 4.45–4.22 16 0.02
III 0.6 6.6(−4) 4.45–4.24 21 ZCO

IV 0.6 2.0(−6) 4.46–4.27 18 ZCO

essentially non-degenerate. In models b and c, on the other
hand, the elemental depletion/enhancement region is al-
ready partially degenerate so that the temperature struc-
ture, which is influenced by the composition dependent
opacity changes, plays only a minor role in the functional
form of d ln ρ/d ln r which enters the Brunt-Väisälä fre-
quency computations.

The AGB evolutionary phase left its traces in the
structure of the C and O profiles (Fig. 2) deep in the star
and in particular in the gradients seen at − log q = 0.3
and about 1.1. The corresponding bumps in the Brunt-
Väisälä frequencies are clearly discernible in all the three
models shown in Fig. 3. The additional narrow Brunt-
Väisälä frequency peak pointed at by vertical arrows in
models a, b, and c are numerical artifacts: The switch-
ing between different numerical treatments of the EoS in
the model-star computations introduced a small glitch in
Γ1 which eventually translated into a narrow spike in the
Brunt-Väisälä frequency. The relevance of this spike is fur-
ther addressed in Sect. 4. The teeth-like structure in the
Brunt-Väisälä frequency between 5.5 < − log q < 6.0 of
model a in Fig. 3 is the result of the switching between
different compositions of tabular opacity data in the re-
gion of rapid spatial C and O change. Since this feature
was restricted to the hottest models for which the corre-
sponding temperature range was nondegenerate, because
the feature occurred close enough to the surface to not in-
terfere with mode trapping, and since it lay deep enough
to not influence the driving/damping of the white dwarfs’
pulsation we tolerated what is a cosmetic flaw in this case.

Table 1 lists the model sequences that are to be dis-
cussed in this paper. Except for the sequence I, only
0.6 M� models were considered. To study the effect of
mass on the instability domain of model stars devoid
of heavy-elements, series I – with a helium envelope of
0.015 M∗ – was computed for 0.5, 0.6, and 0.7 M� each.
The effect of heavy-elements was studied in sequence II,
adopting Z = 0.02. Both sequences, I and II, were com-
puted without abundance diffusion which was included,
however, in sequences III and IV. The latter two model
series had also considerably shallower helium envelope
masses with 6.6×10−4 M∗ and 2.0×10−6 M∗. With ZCO

we denote the metalicity calculated from the variable com-
position resulting from diffusion as min(0.02, XC + XO),
with XC and XO standing for the mass fractions of C
and O. The functional form of the helium-gradient region

in the diffusion-less sequences I and II is comparable to the
initial one in Fig. 2 and it remains invariant under time
evolution. Columns 4 and 5 list the range of effective tem-
peratures covered by the pulsation-model sequences and
the number of star models therein; defining hence roughly
the achieved temperature resolutions in the instability do-
mains.

2.2. Initial models for diffusive sequences

For this study, the pre-WD evolutionary phases were not
modeled in detail. Rather, we obtained our initial models
by artificially brightening an initial WD configuration (see
Benvenuto & Althaus 1998) up to high stellar luminosi-
ties. Specifically, we added an artificial, constant specific
energy generation to the entire model. The energy was in-
creased progressively until the stellar model reached the
desired luminosity, which was much higher than that of
the initial models considered here. Thereafter, the energy
source was turned off smoothly. This procedure leads to
an initial sequence of unphysical models which eventually
settles onto the correct cooling curve long before the DBV
instability strip is reached.

The core chemical composition of our models is that
predicted by evolutionary calculations of WD progenitors
(Salaris et al. 1997) and the mass of the helium enve-
lope was varied in the range of 2 × 10−6

∼< MHe/M∗ ∼<
1.5 × 10−2. Figure 2 shows, with heavy lines, the chem-
ical profile of the starting model of model sequence III.
The functional form the profiles is the same also for se-
quence IV. The envelope is characterized by mass abun-
dances of helium, carbon and oxygen of 0.42, 0.37, and
0.21, respectively. The outer layers’ chemical composition
we assumed for the starting models of sequences III and IV
was taken from Herwig et al. (1999) who have followed the
evolution of a post-AGB remnant through the very late
thermal pulse it experienced on the early cooling branch
(for the born-again scenario see Iben et al. 1983). On the
basis of a detailed treatment in which nuclear burning and
mixing are treated simultaneously, Herwig et al. (1999) ob-
tained hydrogen-deficient models with C-O surface abun-
dance in good agreement with observed abundances in
PG 1159 stars. In view of recent studies (Unglaub & Bues
2000), which indicate that mass loss in hot WDs prevents
or retards gravitational settling of heavy elements; in our
evolutionary models, diffusion is operative after the effec-
tive temperature dropped below 60 000 K.

2.3. Pulsation treatment

The linear nonadiabatic oscillation computations were
performed with the same Riccati shooting-method as re-
ferred to in Gautschy et al. (1996). The complex eigen-
frequencies, σ, are expressed in units of

√
3GM∗/R3

∗,
the “free-fall frequency” of the star. The fact that the
Riccati approach is a direct integration of the nonadia-
batic equations removes the numerical problem of linear
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Fig. 4. The propagation diagram for plane waves for model
a which is also shown in Fig. 2. The dark grey region shows
where waves have g-type character, p-type waves propagate
in the paler grey domain. The horizonal line indicating σleak

indicates the frequency below which g modes are no longer
fully reflected at the stellar surface.

dependencies between the nonadiabatic equations when
they enter near-adiabaticity in the stellar interior. In other
words, linear dependent equations can be directly inte-
grated with the Riccati method whereas they cause singu-
lar matrices in finite difference schemes. The Riccati ap-
proach has already proven its suitability for white-dwarf
pulsation studies before (Gautschy et al. 1996; Gautschy
1997). The full set of nonadiabatic equations was solved
from the surface to the very center of the model stars.
The interior boundary conditions were dictated by the
central regularity of the solutions. At the surface we im-
posed a reflecting boundary and we assumed the validity
of the linearized Stefan-Boltzmann law. Figure 4 shows the
spatial propagation zones of plane waves as grey-shaded
regions. Dark grey indicates g-type character of a wave
and the paler grey p-type character. The critical frequen-
cies were computed from the adiabatic Cowling equations
with our choice of variables. The normalized critical fre-
quency, σleak, below which g modes leak into the atmo-
sphere stayed in the range of 1.5–3.0 ×10−3 for dipole
modes of the 0.6 M� model sequences. Depending on the
position along the cooling track, the lowest σleak trans-
late into periods between 3300 and about 7000 s. These
numbers agree, within a factor of two, with those sug-
gested in the analysis of Hansen et al. (1985). The longest
periods considered in our computations remained always
below the critical period at which leakage sets in. But
even eigenmodes with σ < σleak showed only slightly en-
hanced damping when running-wave boundary conditions
were adopted at the surface. The reason can be attributed
to the surface convection zone constituting an effective re-
flecting layer.

No pulsation-convection coupling was included in the
computations. Therefore, all red boundaries of instabil-
ity domains appearing in this paper must not be trusted.
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Fig. 5. Top panel: instability domain of dipole modes on the
log Teff–period plane for the diffusion-free model sequences de-
void of heavy elements for masses of 0.5 M� (dark grey),
0.6 M� (medium grey), and 0.7 M� (light grey). Lower panel:
loci of the model sequences on the log Teff – log g plane and
their comparison with observed DBVs. Open symbols indicate
pulsationally stable models, filled symbols stand for pulsational
instability. Asterisks denote the calibration of the variable stars
with hydrogen-free model atmospheres; the calibrations with
some H traces left (cf. Beauchamp et al. 1999) are plotted as
stars. The corresponding observational blue edges are indicated
by full and dashed lines, respectively.

Possible forms of the influence of convection and its po-
tential role played in DBVs are specifically addressed in
Sect. 4.

The oscillation computations of most model sequences
had to be terminated at around logTeff = 4.25 despite the
evolutionary sequences extending to lower temperatures.
The use of tabular EoS data to compute the high-density
stellar interiors caused increasingly spiky spatial density
gradients which in turn introduced intolerable noise in the
spatial run of the Brunt-Väisälä frequency.

3. The DB instability

In this section, we present the results from stability analy-
ses of the model sequences listed in Table 1. Nonadiabatic
oscillation spectra were computed for ` = 1 and ` = 2
g modes in the period range between 100 and about 2800 s.
If not stated otherwise, the data are presented for the ob-
servationally preferred dipole modes only. We begin with
the non-diffusive models, comparing g-mode instability of
models with Z = 0 with Z = 2× 10−2 ones. Most of the
section is devoted, however, to the instability domains and
trapping properties of those DB models computed with
diffusion.
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Fig. 6. Dipole-mode instability domains on the log Teff–period
plane of diffusion-free 0.6 M� model sequences devoid of heavy
elements (dark grey area; I6) and with Z = 2×10−2 (light grey
area; II).

The top panel of Fig. 5 illustrates the extents of the
dipole g-mode instability domains of sequences I5 (dark
grey), I6 (medium grey), and I7 (light grey). Within
the given model density, the blue edge of the instabil-
ity domains shows no mass dependence and lies at about
log Teff = 4.42. Only for sequence I6 we encountered
the red edge in the last model of the sequence at about
log Teff = 4.25. The other two model sequences I5 and I7,
show a strong shrinking of the excitation rates and a rapid
decrease of the number of overstable g modes towards
log Teff = 4.25; the cool instability boundary was not yet
reached, however. Of the excited modes, the minimum pe-
riod dropped from 424 s in I5, to 372 s in I6, to finally 335 s
in I7. The maximum period, on the other hand dropped
in the same order from 2608 s, to 2124 s, and 1875 s. The
minimum as well as maximum periods were encountered
between 4.30 < logTeff < 4.33, this means that at most 45
(41) dipole modes were excited in sequence I5 (I6 and I7).

The bottom panel of Fig. 5 compares the loci of the
model sequences I5, I6, and I7 on the log g – logTeff plane
with observed DBV stars as adapted from Beauchamp
et al. (1999). Open symbols stand for pulsationally sta-
ble models and filled ones for overstable models. We code
I5 with small circles, I6 with triangles, and I7 with large
circles. Observations are plotted as stars and asterisks.
The star symbols show the results from fitting model –
atmospheres to observations by neglecting the presence of
hydrogen. The systematically cooler calibrations included
traces of hydrogen that did not yet contradict the observed
spectra. The corresponding “observational blue edges” are
plotted as solid and dashed lines, respectively. Since the
uncertainties in log g are a few hundredth of a dex only,
the divergence of the full and the dashed lines measure the
uncertainty of the blue-edge position along the effective-
temperature axis.

3.1. Heavy elements and the DB instability strip

The dipole instability domains of model sequences I6
and II are displayed in Fig. 6. Interestingly enough, com-
pared with I6, the dipole blue edge of sequence II is about
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Fig. 7. Instability domains on the log Teff–period plane of
model sequences I6, III, and IV.

2500 K cooler. At the low-Teff boundary of sequence II, i.e.
at about logTeff = 4.27, the instability domain does not
yet show signs of the proximity of its red edge. Compared
with sequence I6, II has both longer and shorter periods
excited at low effective temperatures. The periods of the
overstable lowest-order modes are as short as 275 s. Hence,
the instability domains of I6 and II are not only laterally –
in Teff – shifted, but the low-period border of sequence II
lies significantly below the one of sequence I6. According
to our computations, any remaining traces of heavy ele-
ments, at least up to solar, in DB envelopes do not enhance
pulsational instability and shift the blue edge to higher
effective temperatures. Just the contrary occurs, the blue
edge shifts to lower effective temperature. The presence of
heavy elements in the stellar matter reduces the thermal
timescale of the envelope. Compared with Z = 0 mod-
els, the Z = 0.02 ones must get cooler (for more mass to
lie above the driving layers) before a particular pulsation
mode is destabilized.

3.2. Helium-envelope thickness and the DB instability
strip

Figure 7 displays the boundaries of the dipole instability
domains of sequences of 0.6 M� with different helium-
envelope masses. Sequence I6 with its 0.015 M∗ of super-
ficial helium and no diffusion acting led to the instability
domain shown by a full line. The instability borders of
model sequence III – with 6.6 × 10−4 M∗ of helium on
the surface – is plotted with a dotted line. It should be
stressed that not the whole period range of sequence III
between 500 and 1200 s is overstable at the red boundary
at logTeff = 4.25. Due to mode trapping, which is dis-
cussed in more detail below, only a few preferred modes
are driven overstable close to the boundaries of the insta-
bility domain (for a conceptual elucidation see e.g. Fig. 8).
The blue edge is encountered at log Teff = 4.416, it is
the coolest of the three model families being compared
here. Eventually, series IV with the thinnest helium blan-
ket (2×10−6 M∗) resulted in the instability domain which
is traced out by the dash-dotted line.

Independent of diffusion and the thickness of the he-
lium envelope, the loci of the shortest and the longest
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Fig. 8. Eigendata for dipole (left panels) and quadrupole
modes (right panels) of a sequence IV model star at log Teff =
4.341. Top panels: integrated kinetic energies of the oscillation
modes as a function of period. Cyclical trapping of modes ap-
pears as local minima in the total kinetic energy Ekin. Middle
panels: period separations as a function of period. Horizontal
dotted lines delineate the asymptotic period separation of the
respective g modes. Lower panels: imaginary parts of the free-
fall normalized eigenvalues. Negative numbers denote pulsa-
tionally overstable modes, positive ones damped modes. Notice
the well pronounced cyclically enhanced driving and damping,
respectively. The numbers at the peaks of σI label the radial
orders, k, of the corresponding eigenmodes.

periods on the logTeff–period plane agree very well for
the three sequences I6, III, and IV. The blue edges, on
the other hand differ. The skinniest He-envelope mod-
els, those of series IV, show the hottest blue edge at
logTeff = 4.438. The diffusion-less sequence I6 with the
thickest He mass floating on the surface marks the in-
termediate position of the blue edge at logTeff = 4.416.
Finally, for the diffusive sequence III, the instability do-
main starts at logTeff = 4.416. The temperature difference
of the blue-edge locations between sequences III and IV
amounts to about 1350 K.

3.3. Mode-trapping in diffusive models

Mode trapping in compositionally stratified white dwarfs
is asteroseismologically well taken advantage of (e.g.
Bradley & Winget 1994 and references therein) and
thoroughly investigated in adiabatic pulsation theory
(Brassard et al. 1992). We restrict our presentation there-
fore to aspects of nonadiabaticity and discuss selected
models for the sake of clarity and not for their suitability
to fit a particular object.

For the model star at logTeff = 4.341 of model se-
quence IV, Fig. 8 shows the period separation, ∆Π, be-
tween adjacent radial orders for ` = 1 in the mid-left panel
and for ` = 2 on the mid-right. The period separation is
defined by the “forward difference”: (∆Π)k ≡ Πk+1 −Πk.
The dotted horizontal lines in both panels indicate the
period separation as computed from asymptotic theory:
43.6 s for ` = 1 and 25.2 s for ` = 2, respectively.
The cycle length varies roughly symmetrically about the
asymptotic separation. Some cyclical components seem
to be contained in both middle panels; the magnitude of
the period separation prevents, however, a more detailed
quantification.

The “trapping amplitude”, i.e. the magnitude of the
variation of ∆Π as function of Π is about 35 s for ` = 1
and 20 s for ` = 2. These numbers are somewhat bigger
than what is needed for example for GD 358 (cf. Bradley
& Winget 1994); nevertheless, the qualitative character of
the period separation ∆Π as a function of Π compares well
with other studies.

The lower panels of Fig. 8 contain the imaginary parts
of the eigenfrequencies, expressed in units of the star’s
free-fall frequency. The black dots mark the actual posi-
tions of the discrete eigenvalues. Negative values indicate
an oscillatory overstability, positive values mark damped
modes. In the model shown, oscillatory variability prevails
between 385 and 2089 s. In contrast to the period sep-
arations, the imaginary parts exhibit a pronounced and
clearly defined cyclic variability in the sense that in the
instability domain, enhanced instability and in the sta-
bility range enhanced damping is observed for selected
radial overtones. The cycle length inherent in the imagi-
nary parts is clearly longer than in the period separation;
this is further visualized with the vertical lines connecting
the instability spikes with the period separation diagram.
Neither for ` = 1 nor for ` = 2 do we see any pecu-
liar or systematic behavior of ∆Π at the locations of en-
hanced (in)stability. In particular, not all of σI-enhanced
modes do correspond to minima in ∆Π. The trapping-
cycle length has, both for dipole and quadrupole modes,
a stride ∆k = 7, except at low periods where it shrinks to
∆k = 5 in both cases.

The total kinetic energy of the oscillation modes is
shown in the top panels of Fig. 8. Evidently, the enhanced
excitation and damping rates of the bottom panels corre-
late with the local minima of the kinetic energies which
go along with the envelope trapping of eigenmodes.

Figure 9 quantifies the cycle lengths in the σI vs. Π of
sequences III and IV. Sequence III is referred to by cir-
cles and sequence IV by triangles. Dipole-mode results are
plotted as open symbols, those for quadrupole modes are
shown as filled symbols. The magnitude of the separations
between the peaks of the imaginary parts of the eigenfre-
quencies show a clear dependence on the model sequence,
i.e. on the envelope helium-layer thickness. The cycle
length Πtrap[imag] varies between about 80 and 165 s for
sequence III’s dipole modes and between 260 and 350 s in
sequence IV. For the quadrupole modes the cycle lengths
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Fig. 9. Trapping-cycle length as measured in the imaginary
parts of the eigenvalue data as a function of effective temper-
ature of the model sequences III and IV.

are again systematically shorter: between 50 and 100 s for
sequence III and between 150 and 200 s for sequence IV.
The ratio Πtrap[imag](` = 1)/Πtrap[imag](` = 2) varies be-
tween 1.5 and 1.83 for sequence IV, whereas it stays rather
constant at around 1.75 for sequence III.

4. Discussion

To compare the instability domains from our compu-
tations with the corresponding distribution of DBVs
in nature, we rely on the spectroscopic calibrations of
Beauchamp et al. (1999). Our models are all hydrogen
free, therefore the correspondingly higher Teff – scale de-
duced for hydrogen-free atmospheres in Beauchamp et al.
are more relevant. Further evidence for a high-Teff tem-
perature scale comes from the spectroscopic study of C
and H abundances in DBs by Provencal et al. (2000). The
period information was taken from Bradley (2000) plus
the new data on PG 2246+121 as published by Handler
(2001).

Only sequence IV had a blue edge hot enough for
the dipole instability domain to safely enclose most of
the observed DBVs. In particular on the hot side of the
instability domain (EC 20058-5234, PG 1654+160, and
PG 2246+121), the DBVs appear to pulsate with rather
short periods. Dipole instabilities alone, as computed by
us, cannot explain such short periods. Therefore, Fig. 10
shows with a grey inlet also the extent of the quadrupole
overstability region for sequence IV.

Using the high-temperature scale to calibrate the ob-
served DBVs, we see that sequence IV falls only slightly
short in enclosing their instability region on the logTeff–
period plane: EC 20058-5234 and PG 1654+160 are
slightly hotter than sequence IV’s instability domains.
With a simple short-ranged blueward extrapolation, the
observed period ranges can, however, be incorporated
into these instability domains. The results of sequence III
indicated that the overstable shorter-period quadrupole
modes have their blue edge at higher Teffs than the dipole
modes. Therefore, despite the current lack of observational
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Fig. 10. Dipole and quadrupole instability domain for model
sequence IV. Observed DBVs are plotted as asterisks. Period
ranges for selected variables are indicated by vertical lines.
Stars of particular interest are additionally labeled.

evidence for ` = 2 modes, according to our computations
the shortest periods of the hottest DBVs appear to be
good candidates for quadrupole modes.

Measured again with the high-temperature scale of
Beauchamp et al. (1999), most of the observed DBVs have
effective temperatures exceeding log Teff = 4.4. One ex-
ception is PG 1456+160 at logTeff ≈ 4.35 which is classi-
fied as a DBA variable with remaining hydrogen traces
in its envelope. Therefore, it is not a reliable pillar to
discuss the extent of the instability strip. Even if we in-
cluded PG 1456+160 blindly, one big discrepancy between
our computations and the observations remains evident:
the computed instability domain extends to much too low
temperatures, i.e. the red boundary is much too cool. Our
modeling seemingly misses a significant dissipation agent
in the stellar envelopes. As a star’s effective temperature
drops, the driving region moves deeper in mass. Hence, the
crucial thermo-mechanical interaction time-scale grows.
Therefore, we seem to have missed a dissipation agent act-
ing on long time-scales.

As criticized a long time ago by Brickhill (1990), also
we continue to stagnate with the observation that the in-
stability region is not only too extended along the Teff

axis but also in the second direction on the Teff–period
plane. Except close to the blue edge, much longer periods
are computed to be excited than what is observed and the
discrepancy grows towards lower effective temperatures.
In the worst case, about a factor of two too long peri-
ods are found overstable in the computations. The dis-
crepancy cannot be attributed to a missed inclusion of
wave leakage into the atmosphere. In all cases, the longest
overstable periods lie well below the critical periods above
which waves are no longer well reflected at the stellar sur-
face. The short-period boundary of the instability domain
agrees, on the other hand, decently well with observations.
Hence, as encountered along the Teff axis, the missing dis-
sipation seems to act on long time-scales of 1000 s and
above. For our CGM-convection based white-dwarf mod-
els, convective damping is more urgently needed than a
source of convective driving.
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The existing literature (Bradley & Winget 1994;
Beauchamp et al. 1999) teaches us that the DBV blue
edge gets hotter with increasing efficiency of the convec-
tive mixing-length dialect adopted for the stellar mod-
eling. Choosing log g = 8.0 which is the most relevant
surface gravity for us, Beauchamp et al. (1999) computed
the blue edges at logTeff = 4.33, 4.43, and 4.49 when using
ML1, ML2, and ML3, respectively. Hence, the dipole blue
edges of our CGM-based white-dwarf models lie close to
the one of ML2 models in the Beauchamp et al. study.
An exception is sequence II, for which pulsational in-
stability sets in at lower effective temperatures, translat-
ing into a less efficient mixing-length convection picture.
Comparing our CGM results with the Bradley & Winget
(1994) ML-results favor, on the other hand, the high effi-
ciency of ML3. This is caused by the systematically cooler
blue edges found by Bradley & Winget as compared with
Beauchamp et al. (1999).

Any discussion of the location of the instability do-
main of white dwarfs is unsatisfactory and must remain
suspect as long as the role played by convection is not ap-
propriately incorporated. In contrast to the DAV study of
Gautschy et al. (1996) this project is a retrogression since
no simulation data were available on the divergence of the
perturbed convective flux. Furthermore, we were unable
to implement a credible and robust scheme for pulsation –
convection interaction. Therefore, the instability-domain
discussion, in particular aspects concerning the red edge,
must be taken cum grano salis. Nevertheless, the mod-
els computed with convection based on the CGM formal-
ism show the onset of pulsational instability at effective
temperatures comparable to spectroscopic calibrations of
DBVs in nature.

The non-uniformity of the period separations which
we encountered in the computations compares well with
the results in the extensive literature on mode trapping
in compositionally stratified white dwarfs. The novel as-
pect contained in this study is the striking difference in
trapping behavior between period separation and damp-
ing rates as a function of period (cf. Fig. 8).

The local minima of σI are associated with clear min-
ima in the kinetic energies of the corresponding eigen-
modes. As discussed e.g. in Brassard et al. (1992), such
modes are trapped in the superficial layers of a composi-
tionally stratified star and they have reduced amplitudes
in the deep stellar interior. The top panel of Fig. 11 shows
the kinetic-energy density of two overstable dipole modes;
the k = 30 mode is clearly confined to the helium-rich
superficial layers of the star. The mode with radial order
k = 26, on the other hand, shows an enhancement of ki-
netic energy density in the C- and O-rich interior over the
contributions from the superficial regions. For all modes,
we found the trapping (as seen in the imaginary parts of
the eigenfrequencies) to occur at the upper edge of the
diffusive depletion region of helium, i.e. the diffusive tail
into the stellar interior does not seem to be important for
the trapping spectrum of the star.
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Fig. 11. Comparison of eigenmode properties for dipole modes
of radial order k = 26 (dash-dotted line) and k = 30 (full
line) of model at log Teff = 4.341 of sequence IV. The top
panel shows the kinetic energy densities. The middle panel
plots structural quantities: the abundances of helium, carbon,
and oxygen, together with κ̂T = κT/5 − 1. The bottom panel
displays the differential work done by the eigenmodes.

Enhanced instabilities were found to go with trapping
of the corresponding modes in the helium-rich surface lay-
ers; quenched instability was found for modes with re-
duced kinetic energy density in the pure helium surface
and substantial kinetic energy in the CO interior. This
behavior is mirrored to the damped region: modes with
stronger confinement to the CO interior (e.g. k = 54 in
Fig. 8) show reduced, the superficially trapped ones (e.g.
k = 60 in Fig. 8) experience enhanced damping.

The work integrals of the various modes hint indeed at
the phase relations between say pressure and density per-
turbation to be modulated cyclically by the trapping pro-
cess. Correspondingly, favorable phasing induces enhanced
driving and detuning in the very same layers causes en-
hanced damping. The bottom panel in Fig. 11 supports
this picture. Compared with mode k = 26, the superfi-
cially trapped one with k = 30 shows enhanced radiative
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damping below the opacity peak due to ground-state tran-
sitions in He+ (at about logT ≈ 5.2 which corresponds to
logP ≈ 11.5 in the model shown) and enhanced driving in
the opacity peak region. All the important contributions
to the work integral come from the layers above the first
node of the displacement eigencomponent. The deeper ly-
ing particularities of the solution are hence of no direct
influence.

It is worthwhile to point out once more that the period-
separation diagrams display a considerably more compli-
cated trapping structure than the σI – period diagrams.
As discussed before, the σIs react essentially on trapping
induced by the top of the helium diffusion layer only. The
periods on the other hand react also on partial trapping
occurring in the deep stellar interior. Two additional trap-
ping layers are formed by the molecular weight gradients
caused by the C and O abundance changes located at
− log q = 0.3 and 1.1 in Fig. 2. The kinetic energy of
the modes and therefore also the weight functions react
on these deeply buried trapping layers. The many eigen-
function nodes above these trapping layers and the near
adiabaticity of the problem at the trapping depth do not
alter, on the other hand, inter-component phase relations
sufficiently strong to cause a significant modulation of the
σI values. This lets us understand why we find a signifi-
cantly reduced trapping amplitude in σI for models with
thick helium layers (such as sequences I and II).

Finally, we must caution from over-interpreting the de-
tails in the period-separation diagram of Fig. 8. The Γ1

glitch mentioned in Sect. 2.1 caused an additional – un-
real – partial trapping of pulsation modes. The trapping
length, ∆k, induced by the glitch is about 2.6 (cf. Brassard
et al. 1992; their Eq. (43)). The two deep-lying trapping
features addressed in the last paragraph (and clearly visi-
ble in the Brunt-Väisälä frequency in Fig. 3) cause shorter
trapping lengths of 1.6 and 1.3 cycles, respectively. These
∆k numbers explain the wiggly ∆Π behavior on a scale
as short as the period separation of two consecutive eigen-
modes of like degree.

5. Conclusions

The instability domains of the diffusion-free models
with nonvanishing heavy-element abundances in their en-
velopes were not strongly shifted relative to those of mod-
els with pure helium envelopes. If we push our results
to their limits, there seems to be an indication that –
contrary to our initial expectations – stars with heavy-
element enriched envelopes seem to develop oscillatory in-
stabilities at lower effective temperatures than stars with
pure helium ones.

The diffusion-induced abundance gradients in the
model stars appear to be shallower than many analyti-
cal prescriptions used hitherto. The main effect of profiles
resulting from consistent diffusion modeling is a weaker
trapping effect on the periodicities. On the other hand,
the trapping effect is well conserved and expressed in the
imaginary parts of the eigenfrequencies as long as the pure

He envelope stays shallow enough. Trapping at the He gra-
dient is effective only if the pure He envelope is shallow
enough for the diffusive He depletion to set in where the
stellar matter is still essentially non-degenerate. In the
nondegenerate region, also the spatial run of the radia-
tive opacity influences the trapping details. In model se-
quence IV, where the effect was well expressed, the mass
of the pure He envelope was 1.9 × 10−7 M� at the blue
edge of the instability domain. In sequence III, with a
weaker imaginary-part trapping, the pure He envelope had
a mass of 1.6×10−6 M� at the hot border of the instability
domain.

Compared with observations, our computations –
based on CGM-convection star models – show the instabil-
ity domains of dipole and quadrupole oscillations to have
a much to large extension to the red. The blue-edge po-
sition is surprisingly good, however. Furthermore, as in
the previous studies of this subject, much too long pe-
riods are excited in the model stars. Both findings hint
at a missing dissipation agent in the computations. As
we were unable to include a credible pulsation-convection
interaction in the computations, we attribute the obvious
shortcomings – in a long stellar physical tradition – to this
deficiency. If the superficial convection zone of DB mod-
els as computed in this study has structural discrepancies
like those discussed in Gautschy et al. (1996) for DAVs,
then it is conceivable that also additional convective driv-
ing is eventually needed to arrive at an agreement with
observational calibrations.

Lately, Brickhill’s (1983, 1990) pulsation-convection
picture was revitalized by Wu & Goldreich (1999) to in-
terpret the abundant data of the ZZ Ceti class. An appli-
cation of the same formalism to DBVs was always taken
for granted; we were, unfortunately, yet unable to incorpo-
rate it in our numerical Riccati scheme. Without a reliable
pulsation – convection interaction scheme the location of
the red edges for DBVs and DAVs cannot be modeled.
Hence, concerning boundaries of instability domains, our
computations constrain the location of the blue edges.

At the very least, the trapping results of our computa-
tions should remain valid even after a proper incorporation
of pulsation-convection coupling: it is plausible that even
after accounting for the action of a still elusive dissipation
mechanism, only a fraction of the modes in the excitation
peaks in σI survive eventually and therewith drastically
reduce the number of excited modes and hence diminish
the discrepancy between the computed number of excited
and the actually observed modes. Hence, according to e.g.
Fig. 8, we expect the formation of at most a few instabil-
ity islands with only a few overstable consecutive modes
separated from each other by stability gaps of the order
of a few hundred seconds in the case of dipole modes.

The quadrupole modes we computed for this study
showed instabilities comparable to those of dipole modes.
The excited quadrupole modes have typically shorter pe-
riods than the dipole ones; the two domains overlap in the
range of about 500 < P < 1000 s. According to our com-
putations, the period range between about 250 and 500 s
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belongs almost exclusively to quadrupole modes. The lack
of observational evidence for any quadrupole modes in
DBV data requires careful attention in the future.

Acknowledgements. A.G. is pleased to acknowledge finan-
cial support by the Austrian Fonds zur Förderung der
Wissenschaften through grant S7305-AST. The convergence of
S. Fendant and H. Saio in Basel a few years ago led to the con-
ception of this project, A.G. is sincerely indebted to both of
them. Additionally, we benefitted considerably from H. Saio’s
Coxian insights into stellar physics. This research has made
use of NASA’s Astrophysical Data System Abstract Service.
Finally, the presentation of the paper profitted from an anony-
mous referee’s constructive criticism.

References

Althaus, L. G., & Benvenuto, O. G. 1997, ApJ, 477, 313
Althaus, L. G., & Benvenuto, O. G. 2000, MNRAS, 317, 952
Althaus, L. G., Serenelli, A. M., & Benvenuto, O. G. 2001,

MNRAS, 323, 471
Beauchamp, A., Wesemael, F., Bergeron, P., et al. 1999, ApJ,

516, 887
Benvenuto, O. G., & Althaus, L. G. 1998, MNRAS, 293, 177
Bradley, P. A. 1996, ApJ, 468, 350
Bradley, P. A. 2000, Baltic Astron., 9, 485
Bradley, P. A., & Winget, D. E. 1994, ApJ, 430, 850
Bradley, P. A., Winget, D. E., & Wood, M. A. 1993, ApJ, 406,

661
Brassard, P., Fontaine, G., Wesemael, F., & Hansen, C. J. 1992,

ApJS, 80, 369
Brickhill, A. J. 1983, MNRAS, 204, 537
Brickhill, A. J. 1990, MNRAS, 246, 510
Burgers, J. M. 1969, Flow Equations for Composite Gases

(New York: Academic Press)
Canuto, V. M., Goldman, I., & Mazzitelli, I. 1996, ApJ, 473,

550

Dehner, B. T., & Kawaler, S. D. 1995, ApJ, 445, L141
Gautschy, A. 1997, A&A, 320, 811
Gautschy, A., & Saio, H. 1996, ARA&A, 34, 551
Gautschy, A., Ludwig, H.-G., & Freytag, B. 1996, A&A, 311,

493
Handler, G. 2001, MNRAS, 323, L43
Hansen, C. J., Winget, D. E., & Kawaler, S. D. 1985, ApJ, 297,

544
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