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ABSTRACT

We report our observations of the new pulsating hydrogen atmosphere white dwarf SDSS J132350.28+010304.22.
We discovered periodic photometric variations in frequency and amplitude that are commensurate with nonradial
g-mode pulsations in ZZ Ceti stars. This, along with estimates for the star’s temperature and gravity, establishes
it as a massive ZZ Ceti star. We used time-series photometric observations with the 4.1 m SOAR Telescope,
complemented by contemporary McDonald Observatory 2.1 m data, to discover the photometric variability. The
light curve of SDSS J132350.28+010304.22 shows at least nine detectable frequencies. We used these frequencies to
make an asteroseismic determination of the total mass and effective temperature of the star: M? = 0.88 ± 0.02 M¯
and Teff = 12,100 ± 140 K. These values are consistent with those derived from the optical spectra and photometric
colors.
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1. INTRODUCTION

Roughly 97% of all stars born have main-sequence masses
less than 8–10 M¯; these stars will evolve to become white
dwarf stars (e.g., Weidemann 2000). This is in agreement
with Podsiadlowski et al. (2004), who estimate 11 ± 1 M¯ as
the lower limit for stars that evolve to neutron stars. White
dwarf stars are therefore records of stellar evolution history
(Fontaine & Brassard 2008; Winget & Kepler 2008; Althaus
et al. 2010b). Because of their compact nature and high internal
temperatures, they are also useful as probes of high energy
density physics (e.g., Kepler et al. 2005; Isern et al. 2010).
Spectroscopically, more than 80% of all white dwarf stars
show only hydrogen lines and are classified as spectral type
DA (e.g., Kepler et al. 2007; Bergeron et al. 2011). As DAs
cool below an effective temperature ∼13,000 K, they develop a
partial ionization zone near the surface that results in surface
convection. As the convection zone becomes deep enough,
near 12,200 K, depending on the mass of the star, most if
not all DA white dwarf stars start to pulsate in non-radial
g-mode pulsations (e.g., Castanheira et al. 2010). We report
the discovery of pulsations in the higher than average mass DA
SDSS J132350.28+010304.22.

We fit the two existing Sloan Digital Sky Survey (SDSS)
spectra of this star with synthetic spectra, based on atmosphere
models, using ML2/α = 0.6 (e.g., Bergeron et al. 1995)
mixing length convection parameterization, and Tremblay et al.
(2010) non-ideal Stark broadening (Koester et al. 2009; Koester
2010). Each SDSS spectra can be uniquely identified by a

Plate-Modified Julian Date-Fiber number. The two spectra, with
Plate-Modified Julian Date-Fiber = 0297-51959-332 and S/N =
14, yield a fit of Teff = 11,780±160 K and log g = 8.56±0.06,
and M = 0.94 ± 0.03 M¯ (Figure 1), while 0297-51663-324,
with S/N = 11, yields a fit of Teff = 11,900 ± 230 K and
log g = 8.45 ± 0.08, and M = 0.88 ± 0.05 M¯; the masses
were obtained using the evolutionary models of Althaus et al.
(2010a). Tremblay et al. (2011) independently fit the same SDSS
spectra with their α = 0.8 models and find similar values:
Teff = 11,680 ± 200 K and log g = 8.59 ± 0.07, and a mass
M = 0.98 ± 0.05 M¯.

Castanheira et al. (2010) discuss the 148 DAVs known to
date and none have reported magnetic field determinations.
Wickramasinghe & Ferrario (2005) quote a mean mass of
0.93 M¯ for magnetic white dwarfs, compared with 0.6 M¯ for
normal white dwarfs, based on Liebert et al. (2003) determina-
tions. As magnetic field broadening of the lines can be mistaken
as higher gravity, we need to determine if the mass estimated
from the spectra is affected by a magnetic field.

We report higher signal-to-noise (S/N) spectra and polar-
ization measurements showing no clear evidence that SDSS
J132350.28+010304.22 is magnetic to our detection limit
around 1 MG.

2. OBSERVATIONS: PHOTOMETRIC
AND SPECTROSCOPIC

We obtained time series of 30 s images with the B filter on the
night of 2011 April 28, using the SOAR Optical Imager attached
to the SOAR 4.1 m telescope, detecting ZZ Ceti-type pulsations

1

http://dx.doi.org/10.1088/0004-637X/757/2/177
mailto:kepler@if.ufrgs.br


The Astrophysical Journal, 757:177 (7pp), 2012 October 1 Kepler et al.

4000 5000 6000 7000

0

SOAR

Figure 1. Highest S/N spectra, PMF = 0297-51959-332, spectra from SDSS (upper: red) and Soar (lower: black).

(A color version of this figure is available in the online journal.)

Table 1
Multisinusoidal Fit

fi Frequency Period Amplitude
(μHz) (s) (mma)

f1 1633.37 ± 0.05 612.23 ± 0.02 11.9 ± 0.7
f2 1818.83 ± 0.06 549.81 ± 0.02 6.7 ± 0.7
f3 1694.54 ± 0.08 590.13 ± 0.03 7.1 ± 0.7
f4 1571.37 ± 0.12 636.39 ± 0.05 4.8 ± 0.7
f5 1431.35 ± 0.10 698.64 ± 0.05 4.3 ± 0.7
f6 1490.18 ± 0.11 671.06 ± 0.05 4.4 ± 0.7
f7 1203.28 ± 0.10 831.06 ± 0.07 4.6 ± 0.7
f8 2018.39 ± 0.10 495.44 ± 0.03 4.1 ± 0.7
f9 1131.00 ± 0.11 884.17 ± 0.09 4.1 ± 0.7

in SDSS J132350.28+010304.22 for the first time. We obtained
follow-up observations at SOAR on the night of 2011 May 6
and contemporaneously at the McDonald 2.1 m Struve telescope
using the Argos prime focus camera on the nights of 2011 May
6 and 7, with 15 s exposures, and a BG 40 filter, confirming
this object as a new DAV (Figure 2). The standard reduction
procedures and weighted aperture photometry of a total of
600×30 s and 1584×15 s images were performed as described
in Kanaan et al. (2000). The Fourier transform of combined
two-site light curve (Figure 3) shows nine periodicities (Table 1)
to a 99.9% confidence level of 3.4 millimodulation amplitude
(mma). The confidence level was calculated by randomizing the
light curve as described by Costa et al. (1999).

We have also carried out spectroscopic observations using
the SOAR Goodman High Throughput Spectrograph to refine
our spectroscopic mass determinations. The spectrograph was

configured with a 3 arcsec wide slit and using a volume phase
holographic 1200 l mm−1 grating centered around Hα on the
night of 2011 May 12, and using a 2100 l mm−1 grating around
Hβ on the nights of 2011 June 1–3. The spectroscopic reduction
procedures of a total of 3 × 1800 s around Hα, 6 × 1224 s and
9 × 612 s, both around Hβ, were performed using standard
IRAF routines, which include: bias subtraction, flat-fielding,
cosmic-ray cleaning, and flux and wavelength calibration. The
combined spectrum shown in Figure 4 has an S/N of '20.

In an attempt to search for magnetic fields, we obtained
spectropolarimetry with FORS2 on ESO’s Very Large Telescope
(VLT), using the GRISM 300V+10 setup and the λ/2 retarder
plate, on June 30 and July 1. We acquired 4 × 1500 s exposures
with the ±45 deg circular polarizer setup. Figure 5 shows
the spectropolarimetric measurements, showing no evidence of
magnetic fields, but with a low S/N in Stokes V/I. Figure 6
follows the low-field approach of Bagnulo et al. (2002, 2012)
to test for a magnetic field. The lack of significant inclination of
the line is consistent with zero longitudinal field. We also detect
no quadratic Zeeman displacements of the line centers, even for
the higher Balmer lines.

3. RESULTS

Schmidt & Smith (1995) discuss that circular polarization
cannot be detected for equator on line-of-sight fields, and we
used their formula to estimate the probability of not detecting
a field due to inclination, p = 2.5 Blim./Bd = 50% for
Blim. = 200 kG and Bd = 1 MG (Figure 5). To test for a
magnetic field with the equatorial plane close to the line of
sight, it will be necessary to measure linear polarization.
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Figure 2. Light curve of SDSS J132350.28+010304.22 obtained at the 4.1 m SOAR telescope and the 2.1 m Struve Telescope at McDonald Observatory. The black
line shows the sum of nine sinusoids with the amplitude and phases obtained from a nonlinear least-squares fit to the whole time series.

(A color version of this figure is available in the online journal.)
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Figure 3. Fourier transform of the total light curve in the top panel, showing the largest periodicity at 612 s, with 12.2 millimodulation amplitude. The inset shows
the spectral window, the transform of a single sinusoid with the same sampling as the light curve. The lower panels show the step-by-step Fourier transforms after
prewhitening by the largest peaks in the preceding panel. The amplitude scale of each panel is different and the (red) dashed line shows the 1/1000 false alarm
probability estimated for that panel.

(A color version of this figure is available in the online journal.)

The high S/N ESO spectra, also shown in Figure 5, fit a
lower temperature, Teff = 11,300 ± 50 K, log g = 8.73 ± 0.02,
and M = 1.049 ± 0.011 M¯, if we fit the whole spectra,
but Teff = 11,980 ± 10 K, log g = 8.56 ± 0.01, and M =

0.956 ± 0.005 M¯, if we fit only the line profiles. The line
profile fit is more reliable because the flux calibration did
not include the retarder plate or a redetermination of the
extinction after the 2011 Puyehue volcano explosion. The
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Figure 4. Spectra from SOAR 4.1 m telescope around Hα. The upper line shows the PMF = 0297-51959-332 SDSS spectrum.

(A color version of this figure is available in the online journal.)

Table 2
Seismological Fit with the LAPLATA Models

Pobs Ptheo ` k δ

612.23 610.35 1 14 1.88
589.68 591.70 2 25 2.02
549.80 551.80 2 23 2.00
636.32 636.02 2 27 0.30
704.34 704.00 1 17 0.34
671.05 671.46 1 16 0.41
839.14 832.59 2 36 6.56
495.43 490.59 1 11 4.88
884.18 885.10 1 22 0.92

low-resolution spectrum shows no evidence of a magnetic
field.

Assuming that the nine periodicities detected in the light curve
are normal g-modes, we made an amplitude-weighted fit of the
observed periods to those computed from the full evolutionary
models of Althaus et al. (2010a), the LAPLATA models,
following Romero et al. (2012). The results of seismology are:
M∗ = 0.88 ± 0.02 M¯, Teff = 12,100 ± 140 K, MH = (4.0 ±
3.3) × 10−7 M∗, MHe = (2.6 ± 0.3) × 10−3 M∗, log(L/L¯) =
−2.79 ± 0.05, log(R/R¯) = −2.038 ± 0.025, log g = 8.46 ±
0.07, XC = 0.37 ± 0.01, XO = 0.62 ± 0.01, progenitor
mass Minitial = 5.0 ± 0.5 M¯, and φ = 2.15 s, the average
of the differences between theoretical and observed periods
(Table 2). We estimate that the uncertainties in the physics,
such as the uncertainty in the cross section of the C(α, γ )O
reaction, overshooting, thermal pulses, and mass loss, introduce

uncertainties of the order of 1 s in the theoretical periods,
so differences in φ ' 1 s represent good agreement (e.g.,
Bischoff-Kim et al. 2008). The model has not crystallized at
this temperature. It starts to crystallize at Teff ' 10,500 K if
we use the spindle diagram of Segretain & Chabrier (1993) or
at Teff ' 9600 K if we use the azeotropic phase diagram of
Horowitz et al. (2010; see also Althaus et al. 2012).

We also used the simpler models described in Castanheira
& Kepler (2008), which assume C/O = 50%, but allow the
helium and the hydrogen layer mass to vary, to do another
seismological fit, with the results shown in Table 3. From the
averages of the minima of various families of solutions, we
obtained, Teff = 11,900 ± 200 K, M∗ = 0.88 ± 0.08 M¯,
MH = 10−4.5 ± 0.4 M∗, and MHe = 10−2.3 ± 0.5 M∗. The large
difference in MH of the two results may be due to the core-
envelope symmetry studied by Montgomery et al. (2003) and
the simple C/O profile used in Castanheira & Kepler (2008)
models.

To assure that the prewhitening was not introducing uncer-
tainties in the seismological solution, one of us independently
measured the periodicities in the observed light curve by
prewhitening; he obtained a period of 831 s for the smallest
amplitude period measured, and measured another periodicity,
at 525 s, with an amplitude of 3.6 ± 0.7 mma. The uncertainties
quoted for the periods are the internal uncertainties of the fits;
they do not take into account the possibility that the selected
period is a sidelobe of the real period, caused by the presence
of gaps in the data. For the low amplitude modes, selection
of which sidelobe to prewhiten is sometimes ambiguous. We
searched for independent seismological solutions but it resulted
in the same model quoted above, with the smallest amplitude
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Figure 5. Spectropolarimetric measurements from ESO’s VLT 8.2 m telescope. The upper plot shows the flux spectra, while the lower plot shows the observed V/I,
compared to expected circular polarization for a 1 MG field, at viewing angles of 0 deg (pole on the line of sight), 45 deg, and 90 deg (Külebi et al. 2009).

(A color version of this figure is available in the online journal.)
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Figure 6. Circular polarization Stokes parameters V/I plotted vs. λ2(1/I )(dI/dλ), so the slope of the data points is directly the magnetic field (Bagnulo et al. 2002).
For magnetic fields smaller than B ' 300 kG, all the Zeeman components are linear in relation to this parameter. The red points show a 1 MG model. For such a field,
the higher Balmer lines should show significant quadratic contributions, as ΔλQ ∝ n4.

(A color version of this figure is available in the online journal.)

Table 3
Seismological Fit Following Castanheira & Kepler (2008), C/O = 50%

Teff M − log MH − log MHe Φ (s) Modes (`, k)

11,800 0.84 4 2 2.7 485.12(1,10), 550.03(1,12), 583.76(1,13),
612.69(1,14), 642.75(1,15), 675.10(1,16),
705.57(1,17), 834.17(1,21), 897.42 (1,23)

11,700 0.88 4.5 2 2.9 482.73(1,11), 550.25(1,13), 582.94(1,14),
612.21(1,15), 642.98(1,16), 673.45(1,17),
707.15(1,18), 833.59(1,22), 897.18 (1,24)

12,200 0.93 5 3 2.8 489.20(1,11), 549.50(1,13), 585.51(1,14)
613.20(1,15), 643.45(1,16), 678.86(1,17),
710.05(1,18), 834.98(1,22), 897.13(1,24)

modes fitting the model periodicities of 832.59 s and 534.47 s.
Therefore, we conclude that the detected periodicities and the
seismological solution are robust.

4. DISCUSSION

Dolez & Vauclair (1981) and Winget et al. (1982) demon-
strated that the surface partial ionization drives the observed
pulsations in ZZ Ceti stars, and Brickhill (1990) demonstrated
that convective driving is important.

Schmidt & Grauer (1997) and Valyavin et al. (2006) estab-
lished only upper limits of a few kG for the handful of pul-
sating white dwarf stars they observed with spectropolarimetry.
There has been no direct spectroscopic, spectropolarimetric, or
polarimetric evidence for magnetic fields, of any strength, in
the DBV or DAV stars. Fontaine et al. (1973) estimated that

equipartition between magnetic energy and convection kinetic
energy occurs for field strengths in the range 10–100 kG. Fur-
thermore, applying the formalism of Gough & Tayler (1966),
we expect magnetic fields with vertical components in this range
to effectively suppress convection.

SDSS J132350.28+010304.22 has a mass higher than the
average mass of DAs (Kepler et al. 2007; Tremblay et al. 2010),
has an effective temperature close the blue edge of the ZZ Ceti
instability strip, even though the blue edge is mass dependent,
and has long pulsation periods. Kepler et al. (1983), Handler
et al. (2002), and Dolez et al. (2006), for example, used rotational
splittings observed in some ZZ Ceti stars to estimate rotation
periods of order of 1 day. We do not detect multiplets from
rotational or magnetic splitting in this star, but such detections
require longer and denser observations than reported here.
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The seismological mass agrees with the spectral determi-
nation, indicating a mass close to 0.88–0.9 M¯. Comparing
the SDSS colors to the theoretical photometry of Holberg
& Bergeron (2006) results in Teff = 12,330 ± 160 K and
log g = 8.13 ± 0.22. The relatively low log g from the col-
ors is incompatible with the spectroscopic and seismological
results, but its large uncertainty prevent its effective use.

The initial-to-final mass relation of Williams et al. (2009) in-
dicates a mass of the progenitor of (4.17 ± 0.25) M¯, consistent
with the seismological progenitor mass.

The lack of reported magnetic fields among the 148 known ZZ
Ceti stars suggests the possibility that there may be a difference
in the ratio of magnetic to non-magnetic stars in and out of
the instability strip. This makes it important to investigate if
magnetic fields have been missed in the known DAVs or if there
is an observational effect selecting against them.

This work is based on observations at the SOuthern Astro-
physical Research telescope, a collaboration between CNPq-
Brazil, NOAO, UNC, and MSU, and on observations made
with the ESO VLT telescopes at the Paranal Observatory un-
der program ID 287.D-5037(A). SOAR proposals SO2011A-
002, SO2011A-007, and SO2011A-027. ESO proposal 287.D-
5037(A). S.O.K., J.E.S.C., I.P., and V.P. are supported by CNPq
and FAPERGS/Pronex. D.E.W. and M.H.M. gratefully ac-
knowledge the support of the US National Science Founda-
tion under grant AST-0909107 and the Norman Hackerman
Advanced Research Program under grant 003658-0252-2009.
B.K. is supported by the MICINN grant AYA08-1839/ESP,
by the ESF EUROCORES Program EuroGENESIS (MICINN
grant EUI2009-04170), by the 2009SGR315 of the Generali-
tat de Catalunya and EU-FEDER funds. A.K. is supported by
CNPq. A.H.C., A.D.R., and L.G.A. acknowledge AGENCIA
through the Programa de Modernización Tecnológica BID
1728/OC-AR, and the PIP 112-200801-00940 grant from
CONICET.

REFERENCES
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Romero, A. D., Córsico, A. H., Althaus, L. G., et al. 2012, MNRAS, 420, 1462
Schmidt, G. D., & Grauer, A. D. 1997, ApJ, 488, 827
Schmidt, G. D., & Smith, P. S. 1995, ApJ, 448, 305
Segretain, L., & Chabrier, G. 1993, A&A, 271, L13
Tremblay, P.-E., Bergeron, P., & Gianninas, A. 2011, ApJ, 730, 128
Tremblay, P.-E., Bergeron, P., Kalirai, J. S., & Gianninas, A. 2010, ApJ, 712,

1345
Valyavin, G., Bagnulo, S., Fabrika, S., et al. 2006, ApJ, 648, 559
Weidemann, V. 2000, A&A, 363, 647
Wickramasinghe, D., & Ferrario, L. 2005, MNRAS, 356, 1576
Williams, K. A., Bolte, M., & Koester, D. 2009, ApJ, 693, 355
Winget, D. E., & Kepler, S. O. 2008, ARA&A, 46, 157
Winget, D. E., van Horn, H. M., Tassoul, M., et al. 1982, ApJ, 252, L65

7

http://dx.doi.org/10.1088/0004-637X/717/2/897
http://adsabs.harvard.edu/abs/2010ApJ...717..897A
http://adsabs.harvard.edu/abs/2010ApJ...717..897A
http://dx.doi.org/10.1007/s00159-010-0033-1
http://adsabs.harvard.edu/abs/2010A&ARv..18..471A
http://adsabs.harvard.edu/abs/2010A&ARv..18..471A
http://dx.doi.org/10.1051/0004-6361/201117902
http://adsabs.harvard.edu/abs/2012A&A...537A..33A
http://adsabs.harvard.edu/abs/2012A&A...537A..33A
http://dx.doi.org/10.1051/0004-6361/201118098
http://adsabs.harvard.edu/abs/2012A&A...538A.129B
http://adsabs.harvard.edu/abs/2012A&A...538A.129B
http://dx.doi.org/10.1051/0004-6361:20020606
http://adsabs.harvard.edu/abs/2002A&A...389..191B
http://adsabs.harvard.edu/abs/2002A&A...389..191B
http://dx.doi.org/10.1088/0004-637X/737/1/28
http://adsabs.harvard.edu/abs/2011ApJ...737...28B
http://adsabs.harvard.edu/abs/2011ApJ...737...28B
http://dx.doi.org/10.1086/176053
http://adsabs.harvard.edu/abs/1995ApJ...449..258B
http://adsabs.harvard.edu/abs/1995ApJ...449..258B
http://dx.doi.org/10.1086/527287
http://adsabs.harvard.edu/abs/2008ApJ...675.1505B
http://adsabs.harvard.edu/abs/2008ApJ...675.1505B
http://adsabs.harvard.edu/abs/1990MNRAS.246..510B
http://adsabs.harvard.edu/abs/1990MNRAS.246..510B
http://dx.doi.org/10.1111/j.1365-2966.2008.12851.x
http://adsabs.harvard.edu/abs/2008MNRAS.385..430C
http://adsabs.harvard.edu/abs/2008MNRAS.385..430C
http://dx.doi.org/10.1111/j.1365-2966.2010.16633.x
http://adsabs.harvard.edu/abs/2010MNRAS.405.2561C
http://adsabs.harvard.edu/abs/2010MNRAS.405.2561C
http://dx.doi.org/10.1086/307655
http://adsabs.harvard.edu/abs/1999ApJ...522..973C
http://adsabs.harvard.edu/abs/1999ApJ...522..973C
http://adsabs.harvard.edu/abs/1981A&A...102..375D
http://adsabs.harvard.edu/abs/1981A&A...102..375D
http://dx.doi.org/10.1051/0004-6361:20053149
http://adsabs.harvard.edu/abs/2006A&A...446..237D
http://adsabs.harvard.edu/abs/2006A&A...446..237D
http://dx.doi.org/10.1086/592788
http://adsabs.harvard.edu/abs/2008PASP..120.1043F
http://adsabs.harvard.edu/abs/2008PASP..120.1043F
http://dx.doi.org/10.1086/152381
http://adsabs.harvard.edu/abs/1973ApJ...184..911F
http://adsabs.harvard.edu/abs/1973ApJ...184..911F
http://adsabs.harvard.edu/abs/1966MNRAS.133...85G
http://adsabs.harvard.edu/abs/1966MNRAS.133...85G
http://dx.doi.org/10.1046/j.1365-8711.2002.05625.x
http://adsabs.harvard.edu/abs/2002MNRAS.335..399H
http://adsabs.harvard.edu/abs/2002MNRAS.335..399H
http://dx.doi.org/10.1086/505938
http://adsabs.harvard.edu/abs/2006AJ....132.1221H
http://adsabs.harvard.edu/abs/2006AJ....132.1221H
http://dx.doi.org/10.1103/PhysRevLett.104.231101
http://adsabs.harvard.edu/abs/2010PhRvL.104w1101H
http://adsabs.harvard.edu/abs/2010PhRvL.104w1101H
http://dx.doi.org/10.1051/0004-6361/200913716
http://adsabs.harvard.edu/abs/2010A&A...512A..86I
http://adsabs.harvard.edu/abs/2010A&A...512A..86I
http://adsabs.harvard.edu/abs/2000BaltA...9..387K
http://adsabs.harvard.edu/abs/2000BaltA...9..387K
http://dx.doi.org/10.1086/497002
http://adsabs.harvard.edu/abs/2005ApJ...634.1311K
http://adsabs.harvard.edu/abs/2005ApJ...634.1311K
http://dx.doi.org/10.1111/j.1365-2966.2006.11388.x
http://adsabs.harvard.edu/abs/2007MNRAS.375.1315K
http://adsabs.harvard.edu/abs/2007MNRAS.375.1315K
http://dx.doi.org/10.1086/161241
http://adsabs.harvard.edu/abs/1983ApJ...271..744K
http://adsabs.harvard.edu/abs/1983ApJ...271..744K
http://adsabs.harvard.edu/abs/2010MmSAI..81..921K
http://adsabs.harvard.edu/abs/2010MmSAI..81..921K
http://dx.doi.org/10.1088/1742-6596/172/1/012006
http://dx.doi.org/10.1088/1742-6596/172/1/012006
http://adsabs.harvard.edu/abs/2009JPhCS.172a2006K
http://adsabs.harvard.edu/abs/2009JPhCS.172a2006K
http://dx.doi.org/10.1051/0004-6361/200912570
http://adsabs.harvard.edu/abs/2009A&A...506.1341K
http://adsabs.harvard.edu/abs/2009A&A...506.1341K
http://dx.doi.org/10.1086/345573
http://adsabs.harvard.edu/abs/2003AJ....125..348L
http://adsabs.harvard.edu/abs/2003AJ....125..348L
http://dx.doi.org/10.1046/j.1365-8711.2003.06853.x
http://adsabs.harvard.edu/abs/2003MNRAS.344..657M
http://adsabs.harvard.edu/abs/2003MNRAS.344..657M
http://dx.doi.org/10.1086/421713
http://adsabs.harvard.edu/abs/2004ApJ...612.1044P
http://adsabs.harvard.edu/abs/2004ApJ...612.1044P
http://dx.doi.org/10.1111/j.1365-2966.2011.20134.x
http://adsabs.harvard.edu/abs/2012MNRAS.420.1462R
http://adsabs.harvard.edu/abs/2012MNRAS.420.1462R
http://dx.doi.org/10.1086/304746
http://adsabs.harvard.edu/abs/1997ApJ...488..827S
http://adsabs.harvard.edu/abs/1997ApJ...488..827S
http://dx.doi.org/10.1086/175962
http://adsabs.harvard.edu/abs/1995ApJ...448..305S
http://adsabs.harvard.edu/abs/1995ApJ...448..305S
http://adsabs.harvard.edu/abs/1993A&A...271L..13S
http://adsabs.harvard.edu/abs/1993A&A...271L..13S
http://dx.doi.org/10.1088/0004-637X/730/2/128
http://adsabs.harvard.edu/abs/2011ApJ...730..128T
http://adsabs.harvard.edu/abs/2011ApJ...730..128T
http://dx.doi.org/10.1088/0004-637X/712/2/1345
http://adsabs.harvard.edu/abs/2010ApJ...712.1345T
http://adsabs.harvard.edu/abs/2010ApJ...712.1345T
http://dx.doi.org/10.1086/505781
http://adsabs.harvard.edu/abs/2006ApJ...648..559V
http://adsabs.harvard.edu/abs/2006ApJ...648..559V
http://adsabs.harvard.edu/abs/2000A&A...363..647W
http://adsabs.harvard.edu/abs/2000A&A...363..647W
http://dx.doi.org/10.1111/j.1365-2966.2004.08603.x
http://adsabs.harvard.edu/abs/2005MNRAS.356.1576W
http://adsabs.harvard.edu/abs/2005MNRAS.356.1576W
http://dx.doi.org/10.1088/0004-637X/693/1/355
http://adsabs.harvard.edu/abs/2009ApJ...693..355W
http://adsabs.harvard.edu/abs/2009ApJ...693..355W
http://dx.doi.org/10.1146/annurev.astro.46.060407.145250
http://adsabs.harvard.edu/abs/2008ARA&A..46..157W
http://adsabs.harvard.edu/abs/2008ARA&A..46..157W
http://dx.doi.org/10.1086/183721
http://adsabs.harvard.edu/abs/1982ApJ...252L..65W
http://adsabs.harvard.edu/abs/1982ApJ...252L..65W

	1. INTRODUCTION
	2. OBSERVATIONS: PHOTOMETRIC AND SPECTROSCOPIC
	3. RESULTS
	4. DISCUSSION
	REFERENCES

