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Let X, Y be normal bounded operators on a Hilbert space such that

eX = eY . If the spectra of X and Y are contained in the strip S of the

complex plane defined by |Im(z)| � π , we show that |X| = |Y |. If Y
is only assumed to be bounded, then |X|Y = Y |X|.We give a formula

for X − Y in terms of spectral projections of X and Y provided that

X, Y are normal and eX = eY . If X is an unbounded self-adjoint

operator, which does not have (2k+1)π , k ∈ Z, as eigenvalues, and

Y is normal with spectrum in S satisfying eiX = eY , then Y ∈ {eiX}′′.
We give alternative proofs and generalizations of results on normal

operator exponentials proved by Schmoeger.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Solutions to the equation eX = eY were studied by Hille [1] in the general setting of unital Banach

algebras. Under the assumption that the spectrum σ(X) of X is incongruent (mod 2π i), which means

that σ(X) ∩ σ(X + 2kπ i) = ∅ for all k = ±1, ±2, . . ., he proved that XY = YX and there exist

idempotents E1, E2, . . . , En commuting with X and Y such that

X − Y = 2π i

n∑
j=1

kjEj,
n∑

j=1

Ej = I, EiEj = δij,

where k1, k2, . . . , kn are different integers. If the hypothesis on the spectrum is removed, it is possible

to find non commuting logarithms (see e.g. [1,6]). In the setting of Hilbert spaces, when X is a normal
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operator, the above assumption on the spectrumcan beweakened. In fact, Schmoeger [5] proved thatX

belongs to thedouble commutant ofY provided thatEX(σ (X)∩σ(X+2kπ i)) = 0, k = 1, 2, . . .,where

EX is the spectral measure of X . We also refer to [3] for a generalization of this result by Paliogiannis.

In this paper, we study the operator equation eX = eY in the setting of Hilbert spaces under the

assumption that the spectra of X and Y belong to a non-injective domain of the complex exponential

map. Our results include the relation between the modulus of X and Y (Theorem 3.1), a formula for

the difference of two normal logarithms in terms of their spectral projections (Theorem 4.1) and

commutation relations when X is a skew-adjoint unbounded operator (Theorem 5.1). The proofs of

these results are elementary. In fact, they rely on the spectral theorem for normal operators. This

approach allows us to give a generalization (Corollary 4.2) and an alternative proof (Corollary 3.2) of

two results by Schmoeger (see [6]).

2. Notation and preliminaries

Let (H, 〈 · , ·〉 ) be a complex Hilbert space and B(H) be the algebra of bounded operators on H.

The spectrum of an operator X is denoted by σ(X), and the set of eigenvalues of X is denoted by σp(X).

The real part of X ∈ B(H) is Re(X) = 1
2
(X + X∗) and its imaginary part is Im(X) = 1

2
(X − X∗).

If X is a bounded or unbounded normal operator onH, we denote by EX the spectral measure of X .

Recall that EX is defined on the Borel subsets of σ(X), but we may think that EX is defined on all the

Borel subsets of C. Indeed, we can set EX(�) = EX(� ∩ σ(X)) for every Borel set � ⊆ C. Our first

lemma is a generalized version of [4, Ch. XII Ex. 25],where the normal operator can nowbeunbounded.

Lemma 2.1. Let X be a (possibly unbounded) normal operator on H and f a bounded Borel function on

σ(X). Then

Ef (X)(�) = EX(f
−1(�)),

for every Borel set � ⊆ C.

Proof. We define a spectral measure by E′(�) = EX(f
−1(�)), where � is any Borel subset of C. We

are going to show that E′ = Ef (X). Since f is bounded, it follows that f (X) ∈ B(H). Moreover, the

operator f (X) is given by

〈f (X)ξ, η〉 =
∫
C

f (z) dEX ξ,η(z) ,

where ξ, η ∈ H and EX ξ,η is the complex measure defined by EX ξ,η(�) = 〈EX(�)ξ, η〉 (see [4,

Theorem 12.21]). By the change of measure principle ([4, Theorem 13.28]), we have

∫
C

z dE′
ξ,η(z) =

∫
C

f (z) dEX ξ,η(z).

ThereforeE′ satisfies theequation
∫
C z dE′

ξ,η(z) = 〈f (X)ξ, η〉 ,whichuniquelydetermines the spectral

measure of f (X) (see [4, Theorem 12.23]). Hence E′ = Ef (X). �

The following lemmawas first proved in [6, Corollary 2]. See also [3, Corollary 3] for another proof.

We give below a proof for the sake of completeness, which does not depend on further results of these

articles.

Lemma 2.2. Let X and Y be normal operators in B(H). If eX = eY , then Re(X) = Re(Y).

Proof. The following computation was done in [6]:

eX+X∗ = eXeX
∗ = eX(eX)∗ = eY (eY )∗ = eY eY

∗ = eY+Y∗
,
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where the first and last equalities hold because X and Y are normal. Now we may finish the proof in a

different fashion: note that the exponential map, restricted to real axis, has an inverse log : R+ → R.

Since σ(X + X∗) ⊆ R and σ(eX+X∗
) ⊆ R+, we can use the continuous functional calculus to get

X + X∗ = log(eX+X∗
) = log(eY+Y∗

) = Y + Y∗. �

Throughout this paper, we use the following notation for subsets of the complex plane:

• �1 + i�2 = { x + iy : x ∈ �1, y ∈ �2 }, where �i, i = 1, 2, are subsets of R.
• For short, we write R + ia for the set R + i{ a }.
• We write S for the complex strip { z ∈ C : −π � Im(z) � π }, and S◦ for the interior of S .

Lemma 2.3. Let X, Y be normal operators in B(H) such that σ(X) ⊆ S and σ(Y) ⊆ S . Then eX = eY if

and only if the following conditions hold:

(i) EX(�) = EY (�) for all Borel subsets � of S◦.
(ii) Re(X) = Re(Y).

Proof. Suppose that eX = eY . Let � be a Borel measurable subset of S◦. By the spectral mapping

theorem,

σ(eX) = { eλ : λ ∈ σ(X) } = { eμ : μ ∈ σ(Y) } = σ(eY ).

It is well-known that the restriction of the complex exponential map exp |S◦ is bijective. Therefore we

have σ(X) ∩ � = σ(Y) ∩ �, and by Lemma 2.1,

EX(�) = EX(� ∩ σ(X)) = EX( exp
−1(exp(� ∩ σ(X))) )

= EeX (exp(� ∩ σ(X))) = EeY (exp(� ∩ σ(Y))) = EY (�),

which proves (i). On the other hand, (ii) is proved in Lemma 2.2.

To prove the converse assertion, we first note that

EX(R − iπ) + EX(R + iπ) = I − EX(S◦) = I − EY (S◦)
= EY (R − iπ) + EY (R + iπ),

since σ(X) ⊆ S , σ(Y) ⊆ S and EX(S◦) = EY (S◦). Due to the fact that EX and EY coincide on Borel

subsets of S◦, we find that

∫
S◦ e

z dEX(z) =
∫
S◦ e

z dEY (z).

Hence we get

eX =
∫
S
ez dEX(z) = −

∫
R+iπ

eRe(z) dEX(z) −
∫
R−iπ

eRe(z) dEX(z) +
∫
S◦ e

z dEX(z)

= −eRe(X)( EX(R + iπ) + EX(R − iπ) ) +
∫
S◦ e

z dEX(z)

= −eRe(Y)( EY (R + iπ) + EY (R − iπ) ) +
∫
S◦ e

z dEY (z) = eY . �

Remark 2.4. We have shown that EX(R− iπ)+ EX(R+ iπ) = EY (R− iπ)+ EY (R+ iπ), whenever

X, Y are normal bounded operators such that σ(X) ⊆ S , σ(Y) ⊆ S and eX = eY .
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Theorem 2.5. (Kurepa [2]) Let X ∈ B(H) such that eX = N is a normal operator. Then

X = N0 + 2π iW,

whereN0 = log(N) and log is the principal (or any) branch of the logarithm function. The boundedoperator

W commutes with N0 and there exists a bounded and regular, positive definite self-adjoint operator Q such

that W0 = Q−1WQ is a self-adjoint operator the spectrum of which belongs to the set of all integers.

3. Modulus and square of logarithms

Nowwe show the relation between the modulus of two normal logarithms with spectra contained

in S .

Theorem 3.1. Let X be a normal operator in B(H). Assume that σ(X) ⊆ S and eX = eY .

(i) If Y is normal in B(H) and σ(Y) ⊆ S , then |X| = |Y |.
(ii) If Y ∈ B(H), then |X|Y = Y |X|.

Proof. (i) We will prove that the spectral measures of |Im(X)| and |Im(Y)| coincide. Let us set A =
Im(X) and B = Im(Y). Given � ⊆ [0, π), put �′ = { x ∈ R : |x| ∈ � }. Note that R + i�′ ⊆ S◦. As
an application of Lemmas 2.1 and 2.3, we see that

E|A|(�) = EA(�
′) = EX(R + i�′) = EY (R + i�′) = EB(�

′) = E|B|(�).

By Remark 2.4, we have

E|A|({π }) = EA({−π, π }) = EX(R − iπ) + EX(R + iπ)

= EY (R − iπ) + EY (R + iπ) = E|B|({ π }).
Thus, we have proved E|A| = E|B|, which implies that |A| = |B|. On the other hand, by Lemma 2.2, we

know that Re(X) = Re(Y). Therefore

|X|2 = Re(X)2 + |A|2 = Re(Y)2 + |B|2 = |Y |2.

Hence |X| = |Y |, and the proof is complete.

(ii) Since X is a normal operator, eX = eY is also a normal operator. Then by a result by Kurepa (see

Theorem 2.5), there exist operators N0 andW such that N0 is normal, eX = eN0 ,W commutes with N0

and Y = N0 + 2π iW . In fact, N0 can be defined using the Borel functional calculus by N0 = log(eX),
where log is the principal branch of the logarithm. In particular, this implies that σ(N0) ⊆ S . Now
we can apply i) to find that |N0| = |X|. Since N0W = WN0, we have |N0|W = W|N0|, and this gives

W|X| = |X|W . Hence |X|Y = Y |X|. �

Following similar arguments,we can give an alternative proof of a result by Schmoeger ([6, Theorem

3]). This result was originally proved using inner derivations. Note that a minor improvement on the

assumption on σ(X) over the boundary ∂S of the strip S can now be done. Given a set � ⊆ C, we

denote by �̄ the set { x − iy : x + iy ∈ � }.
Corollary 3.2. Let X be a normal operator in B(H), σ(X) ⊆ S , Y ∈ B(H) and eX = eY . Suppose that

for every Borel subset � ⊆ ∂S \ {−iπ, iπ }, it holds that EX(�̄) = 0, whenever EX(�) �= 0. Then

X2Y = YX2.
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Proof. We will show that EX2(�0) commutes with Y for every Borel subset �0 ⊆ σ(X2). From the

equation eX = eY , we have eXY = YeX , and thus, EeX (�)Y = YEeX (�) for any Borel set �. Since the

set � is arbitrary, by Lemma 2.1 we get

(1) EX(�
′)Y = YEX(�

′) for every subset �′ ⊆ S◦.
(2) (EX(�

′) + EX(�̄
′))Y = Y(EX(�

′) + EX(�̄
′)), whenever �′ ⊆ ∂S .

On the other hand, the image of S by the analytic map f (z) = z2 is given by

f (S) = { u ± i2t

√
u + t2 : u ∈ [−π2, ∞), u + t2 � 0 }.

Let us write f−1(�0) = �− ∪ �+ , where �− = f−1(�0) ∩ { z ∈ C : Re(z) < 0 } and �+ =
f−1(�0) ∩ { z ∈ C : Re(z) � 0 }. We point out that EX2(�0) = EX(�+) + EX(�−).

Next we need to consider three cases. In the case in which �0 ⊆ f (S)◦, then �+ ⊆ S◦ and �− ⊆
S◦. By the item (1) above we have EX2(�0)Y = YEX2(�0). In the case where �0 ⊆ ∂ f (S) \ {−π2 },
we have that�+ ⊆ ∂S ∩{ z ∈ C : Re(z) > 0 }. It follows that either EX(�+) = 0 or EX(�̄+) = 0 by

our assumption on the spectral measure of X . Similarly, it must be either EX(�−) = 0 or EX(�̄−) = 0.

Therefore item (2) above reduces to the desired conclusion, i.e. EX2(�0)Y = YEX2(�0). Finally, if

�0 = {−π2}, then EX2(�0) = EX({−iπ }) + EX({ iπ }) commutes with Y by item (2), and this

concludes the proof. �

4. Difference of logarithms

Let X, Y be normal operators and k ∈ Z. In order to avoid lengthly formulas, let us fix a notation

for some special spectral projections of these operators:

• P2k+1 = EX( R + i( (2k − 1)π, (2k + 1)π) );
• Q2k+1 = EY ( R + i( (2k − 1)π, (2k + 1)π) );
• E2k+1 = EX( R + i(2k + 1)π );
• F2k+1 = EY ( R + i(2k + 1)π ).

As we have pointed out in the introduction, Hille showed that the difference between two logarithms

in Banach algebras may be expressed as the sum of multiples of projections (see [1, Theorem 4]). In

order to prove that result, the spectrum of one of the logarithms must be incongruent (mod 2π i). In

the case where X and Y are both normal logarithms on a Hilbert space, the spectral theorem can be

used to provide a more general formula.

Theorem4.1. Let X and Y be normal operators inB(H) such that eX = eY . Ifσ(X) andσ(Y) are contained
in R + i[ (2k0 + 1)π, (2k1 + 1)π ] for some k0, k1 ∈ Z, then

X − Y =
k1∑

k=k0

(
2kπ i (P2k+1 − Q2k+1) + (2k + 1)π i (E2k+1 − F2k+1)

)
.

Proof. We first suppose that σ(X) and σ(Y) are contained in the strip S . Then we have Im(X) =
Im(X)(EX(S◦) + EX( R + iπ) + EX( R − iπ) ) = Im(X)P1 + πE1 − πE−1. Analogously, Im(Y) =
Im(Y)Q1 + πF1 − πF−1. By Lemma 2.3, we know that Re(X) = Re(Y) and EX(�) = EY (�) for every
Borel subset � of S◦. It follows that

Im(X)P1 =
∫
S◦ Im(z) dEX(z) =

∫
S◦ Im(z) dEY (z) = Im(Y)Q1,
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which implies

X − Y = π i(E1 − F1) − π i(E−1 − F−1). (1)

Thus, we have proved the formula in this case. For the general case, without restrictions on spectrum

of X and Y , we need to consider the following Borel measurable function

f (t) =
k1∑

k=k0−1

(t − 2kπ) χ ((2k−1)π,(2k+1)π ] (t),

where χI(t) is the characteristic function of the interval I. Set A = Im(X) and B = Im(Y). By Lemma

2.2, Re(X) = Re(Y), and since the real and imaginary part of X and Y commute because X and Y are

normal, eiA = eXe−Re(X) = eY e−Re(Y) = eiB. The function f satisfies eif (t) = eit , which implies that

eif (A) = eiA = eiB = eif (B). Since σ(f (A)) and σ(f (B)) are contained in [−π, π ], we can replace in Eq.

(1) to find that

f (A) − f (B) = π( Ef (A)({ π }) − Ef (B)({ π } ))

= π

k1∑
k=k0−1

(
EA({ (2k + 1)π }) − EB({ (2k + 1)π }))

= π

k1∑
k=k0

(
E2k+1 − F2k+1

)
. (2)

Here we have used Lemma 2.1 to express Ef (A), EA and Ef (B), EB in terms of EX and EY respectively. In

particular, note that Ef (A)({−π }) = Ef (B)({−π }) = 0. On the other hand, we have

(1) f (A) =
k1∑

k=k0−1

(A − 2kπ) χ((2k−1)π,(2k+1)π ](A) = A −
k1∑

k=k0

2kπ(P2k+1 + E2k+1),

(2) f (B) = B −
k1∑

k=k0

2kπ(Q2k+1 + F2k+1).

Therefore

X − Y = i(A − B)

= i(f (A) − f (B)) +
k1∑

k=k0

(
2kπ i(P2k+1 − Q2k+1) + 2kπ i(E2k+1 − F2k+1)

)
.

Combining this with the expression in (2), we get the desired formula. �

Below we give a generalization of another result due to Schmoeger (see [6, Theorem 5]). The as-

sumptions on the spectrum of X and Y were more restrictive in [6]: ‖X‖ � π , ‖Y‖ � π and either

−iπ or iπ does not belong to the point spectrum of one of these operators. However, these hypothesis

were necessary to conclude that X − Y is a multiple of a projection; meanwhile XY = YX can be

obtained under more general assumptions (see [6, Theorem 3], [5, Theorem 1.4] and [3, Theorem 9]).

Corollary 4.2. Let X, Y be normal operators in B(H). Assume that σ(X) ⊆ S , σ(Y) ⊆ S and eX = eY .

The following assertions hold:
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(i) If E1 = 0, then XY = YX and X − Y = −2π i F1.

(ii) If E−1 = 0, then XY = YX and X − Y = 2π i F−1.

(iii) If E1 = E−1 = 0, then X = Y.

Proof. (i) Under these assumptions on the spectra of X and Y , we have established that E−1 + E1 =
F−1 + F1 in Remark 2.4. On the other hand, by Eq. (1) in the proof of Theorem 4.1, we know that

X − Y = π i(E1 − F1) − π i(E−1 − F−1). Since E1 = 0, we have E−1 = F1 + F−1. It follows that

X = −2π iF1 + Y . Hence X and Y commute. We can similarly conclude that (ii) holds true. To prove

(iii), note that E1 = E−1 = 0 implies that F1 + F−1 = 0, and consequently, F1 = F−1 = 0. Hence we

get X = Y . �

5. Unbounded logarithms

Let X be a self-adjoint unbounded operator on H. As before, EX denotes the spectral measure of

X . In item (i) of our next result, we will give a version of [5, Theorem 1.4] for unbounded operators

(see also [3, Theorem 9]). To this end, we extend the definition given in [5] for bounded operators: a

self-adjoint unbounded operator X is generalized 2π-congruence-free if

EX(σ (X) ∩ σ(X + 2kπ)) = 0, k = ±1, ±2, . . . .

Given Y ∈ B(H), the commutant of Y is the set

{ Y }′ = { Z ∈ B(H) : ZY = YZ }.
The double commutant of Y is defined by

{ Y }′′ = {W ∈ B(H) : WZ = ZW, for all Z ∈ { Y }′ }.
If X is a self-adjoint unbounded operator and Y ∈ B(H), recall that XY = YX , that is X commutes with

Y , if YEX(�) = EX(�)Y for every Borel subset � ⊆ R. Recall that the exponential eiX of a self-adjoint

unbounded operator X is a unitary operator, which can be defined via the Borel functional calculus

(see e.g. [4]).

Theorem 5.1. Let X be a self-adjoint operator onH and Y ∈ B(H) such that eiX = eY .

(i) If X is generalized2π-congruence-free, then EX(�) ∈ { Y }′′ for all Borel subsets� ofR. In particular,

XY = YX.

(ii) If { (2k + 1)π : k ∈ Z } ∩ σp(X) has at most one element and Y is normal in B(H) such that

σ(Y) ⊆ S , then XY = YX.

(iii) If (2k+ 1)π /∈ σp(X) for all k ∈ Z and Y is normal in B(H) such that σ(Y) ⊆ S , then Y ∈ { eiX }′′.
Proof. (i) Let Z ∈ B(H) such that ZY = YZ. It follows that ZeY = eYZ. Then we have ZeiX = eiXZ , and

by Lemma 2.1, ZEX(exp
−1(�)) = EX(exp

−1(�))Z for every � ⊆ T. If �′ = exp−1(�) ∩ [−π, π ],
then

EX(exp
−1(�)) = ∑

k∈Z

EX(�
′ + 2kπ),

where this series converges in the strong operator topology. Suppose now that there is some k ∈ Z

such that EX(�
′ + 2kπ) �= 0. It follows that σ(X) ∩ (�′ + 2kπ) �= ∅, and (�′ + 2lπ) ∩ σ(X) ⊆

σ(X)∩σ(X+2(l−k)π) for all l ∈ Z. By the assumption on the spectralmeasure of X , EX(�
′+2lπ) �

EX(σ (X) ∩ σ(X + 2(l − k)π)) = 0 for l �= k. Therefore for each �, the above series reduces to only
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one spectral projection corresponding to a set of the form �′ + 2kπ . Hence Z commutes with all the

spectral projections of X .

(ii) We need to consider the Borel measurable function f defined in the proof of Theorem 4.1. Since

eiX = eY , we have that eif (X) = eY . Recall that EX({ (2k+ 1)π }) �= 0 if and only if (2k+ 1)π ∈ σp(X)
([4, Theorem 12.19]). By the hypothesis on the eigenvalues of X , there is at most one n0 ∈ Z such that

EX({ (2n0 + 1)π }) �= 0. According to Lemma 2.1, we get

Ef (X)({π }) = ∑
k∈Z

EX({ (2k + 1)π }) = EX({ (2n0 + 1)π }).

On theotherhand,Ef (X)({−π }) = 0 for all k ∈ Zbydefinitionof the function f . According toCorollary

4.2 ii), it follows that if (X) = Y + 2π iF−1. By Remark 2.4, we also know that EX({ (2n0 + 1)π }) =
F−1 + F1. In order to show that Y commutes with all the spectral projections of X , we divide into two

cases. If � ⊆ C \ { (2k+ 1)π : k ∈ Z }, note that EX(�)F−1 = 0 because F−1 � EX({ (2n0 + 1)π }).
Hence we get

EX(�)Y = EX(�)(if (X) − 2π iF−1) = iEX(�)f (X) = if (X)EX(�) = YEX(�).

If � ⊆ { (2k + 1)π : k ∈ Z }, we only need to prove that EX({ (2n0 + 1)π }) commutes with Y . This

follows immediately, because EX({ (2n0 + 1)π }) is the sum of two spectral projections of Y .

(iii) As in the proof of ii), we have eif (X) = eY . Now by the assumption on the eigenvalues of X , it

follows that

Ef (X)({−π, π }) = ∑
k∈Z

EX({ (2k + 1)π }) = 0. (3)

Applying Corollary 4.2 (iii), we get if (X) = Y . Recall that f (X) is a self-adjoint operator such that

σ(f (X)) ⊆ [−π, π ].
Let Z ∈ B(H) such that ZeiX = eiXZ. Then we have ZEeiX (�) = EeiX (�)Z for every Borel set � ⊆ T.

We are going to show that ZEf (X)(�
′) = Ef (X)(�

′)Z for every�′ ⊆ [−π, π ]. We need to consider two

cases. If�′ ⊆ (−π, π), there exists a unique set� ⊆ T\{−1 } such that exp−1(�)∩[−π, π ] = �′.
Therefore

Ef (X)(�
′) = ∑

k∈Z

EX(�
′ + 2kπ) = EX(exp

−1(�)) = EeiX (�).

If �′ ⊆ {−π, π }, by Eq. (3) we find that Ef (X)(�
′) = 0. Hence we obtain that Z commutes with

every spectral projection of f (X). The latter is equivalent to saying that Z commute with Y , and this

concludes the proof. �
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