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Taking as a probe an SU(2) gauge field with Yang–Mills action in a 3 + 1 dimensional Lifshitz black
hole background, we use the gauge/gravity correspondence to discuss finite temperature effects in the
dual theory defined on the boundary. In order to test the dependence of results on the anisotropic
scaling exponent z we consider two analytical black hole solutions with z = 2 and z = 4. Apart from
solving the equations of motion in the bulk using a numerical approach, we also apply an analytical
approximation allowing the determination of the phase transition character, the critical exponent and
the critical temperature behavior as a function of z.

© 2013 Elsevier B.V. Open access under CC BY license.
Models with anisotropic scaling were introduced in condensed
matter physics more than thirty years ago in order to discuss tri-
critical points (see [1] and references therein). They are at present
actively investigated in the context of gravitational theories in
which space–time anisotropic scaling improves the short distance
behavior (see [2] and references therein). A link between these two
issues was established by Kachru, Liu and Mulligan [3] within the
framework of the gauge/gravity correspondence by searching grav-
ity duals of non-relativistic quantum field theories. Studying the
equations of motion of Einstein gravity with negative cosmological
constant coupled to p = 1 and 2-forms a solution was found in [3]
with the metric taking the form

ds2 = L2
µ

−r2z dt2 + r2 dEx2 + dr2

r2

¶
(1)

where 0 < r < ∞, dEx2 = dx2
1 +· · ·+dx2

n , L is the radius of curvature
of the geometry and z > 1. Metric (1) is invariant under anisotropic
scaling of space–time coordinates

t → λzt, Ex → λEx, r → r

λ
(2)

with z playing the role of the dynamical critical exponent [2].
The coordinates’ inverse length dimensions are: [t] = −z, [r] = +1,
[x] = [y] = −1. Taking Eq. (1) as a background metric, the authors
in Ref. [3] extended the gauge/gravity duality to the case of mod-
els with anisotropic scaling and explored the boundary observables
dual to free scalar fields in a 3 + 1 dimensional bulk.
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The finite temperature extension of the gauge/gravity duality
requires to consider a black hole bulk metric with line element

ds2 = L2
µ

−gz(r)r
2z dt2 + 1

gz(r)r2
dr2 + r2¡dx2 + dy2¢¶ (3)

where gz vanishes at the horizon rH . Different black hole solutions
with anisotropic scaling are available [4–8] and a number of holo-
graphic studies have considered them as a background with bulk
Lagrangians including different fields: charged matter, Abelian and
non-Abelian gauge fields, fermions and massive Proca fields [9–14].

Using the gauge/gravity correspondence we study in the present
work finite temperature effects in the dual theory defined on the
boundary. We take as a probe an SU(2) gauge field Aμ with Yang–
Mills action, this implying that the order parameter is a vector and
that one should expect a strongly anisotropic result for conductiv-
ities (among the works cited above, solely Ref. [14] has considered
a vector order parameter). In order to test the dependence of re-
sults on z we shall consider two analytical 3 + 1 dimensional black
hole solutions with different z values: the z = 2 black hole found
in [8] and the one presented in [9] and [15] for the z = 4 case.

The z = 2 black hole constructed in [8] arises as a solution
of the equations of motion for a 3 + 1 dimensional gravitational
theory with negative cosmological constant coupled to a massive
vector field Aμ and a scalar field Φ without kinetic term. The ac-
tion reads

S2 = 1

2

Z
d4x (R − 2Λ) −

Z
d4x

µ
1

4
exp(−2Φ)FμνFμν

+ m2

2
AμAμ + ¡

exp(−2Φ) − 1
¢¶

(4)

The solution of the equations of motion corresponds to a metric
with line element given by Eq. (3) with
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g2(r) = 1 − r2
H

r2
(5)

Starting from an action in which a Maxwell field Aμ is coupled to
gravity but not directly to the massive vector field, a charged z = 4
flat horizon black hole solution was presented in Refs. [9,15]. The
action takes in this case the form

S4 = 1

2

Z
d4x (R − 2Λ)

−
Z

d4x

µ
1

4
Fμν F μν + 1

4
FμνFμν + m2

2
AμAμ

¶
(6)

with the black holes function g4 given by

g4(r) = 1 − Q 2

8r4
(7)

where Q is an integration constant related to the Maxwell field.
The black hole temperature associated with (3) is given by

T z = 1

β
= |g0

z(rH )|rz+1
H

4π
(8)

so that for the z = 2,4 black holes described above one has

T2 = r2
H

2π
, T4 = Q 2

8π
(9)

Note that [T z] = z.
As stated above, we take as a probe an SU(2) gauge field Aa

μ
(a = 1,2,3) in the black hole background (3) with gz(r) given
by (5) and (7). We take from here on L = 1. We start from the
Yang–Mills action

S = −1

4

Z
d4x

p|g|F a
μν F aμν (10)

The field strength F a
μν (a = 1,2,3) is defined as

F a
μν = ∂μ Aa

ν − ∂ν Aa
μ + εabc Ab

μ Ac
ν (11)

We have taken the gauge coupling constant equal to one. The
equations of motion read

1√−g
∂μ

¡√−g F aμν
¢ − ²abc F bνμ Ac

μ = 0 (12)

In order to solve these equations we shall consider the ansatz pro-
posed in [16] for a relativistic non-Abelian gauge theory defined in
an asymptotically AdS space–time

A = φ(r)τ 3 dt + ω(r)τ 1 dx (13)

where τ a are Pauli matrices. The gauge field inverse length dimen-
sions are [φ] = z and [ω] = 1. It will be convenient to introduce
the dimensionless variable u = rH/r, so that the horizon is located
at u = 1 and the asymptotic boundary at u = 0. In terms of this
variable, and inserting the black hole metric (3), Eqs. (12) reduce to

φ00 + z − 1

u
φ0 − 1

r2
H g(u)

φω2 = 0 (14)

ω00 + uz−1

g(u)
∂u

¡
u1−z g(u)

¢
ω0 + u2z−2

r2z
H g(u)2

ωφ2 = 0 (15)

Let us discuss appropriate conditions for the gauge field com-
ponents. The consistent conditions at the u = 1 horizon are

φ ∼ φ1(1 − u) + · · · (16)
u → 1

ω ∼ ωH + (1 − u)2ω1 + · · · (17)
Concerning the boundary u = 0, one has

φ ∼ μ + ρ ln(u) + · · · (18)
z = 2, u → 0

ω ∼ ω0 + Ωu2 + · · · (19)

φ ∼ μ + ρu2−z + · · · (20)
z > 2, u → 0

ω ∼ ω0 + Ωuz + · · · (21)

According to the gauge/gravity correspondence μ will be iden-
tified with the chemical potential and ρ with the total charge
density in the dual theory defined on the boundary.

The general solution for φ with z = 2 in the normal phase takes
the form

φn = μn + ρ ln(u)

ω = 0 (22)

Using the horizon condition φ(1) = 0, we have that

μn = 0 (23)

so that the chemical potential of the normal phase vanishes. In
contrast, for the z = 4 normal phase one has

φn = ρ

µ
1 − 1

u2

¶

ω = 0 (24)

and hence the chemical potential of the z = 4 normal phase is
non-vanishing, μn = ρ .

In the z = 1 relativistic case the divergencies of the action at
the boundary are eliminated by adding counterterms. New diver-
gent terms arise for z > 2 but taking a fixed charge density ρ
as boundary condition makes these terms temperature indepen-
dent [10]. We thus adopt this natural choice in what follows. If,
as it happens in the z = 1 case [16], ansatz (13) for a z > 1 theory
can be related to a holographic p-wave superconductor, the order
parameter should then be Ω . The necessary requirement for Ω

to be unsourced forces the choice of vanishing ω0 in Eq. (21) or
Eq. (24). The divergencies of the action in the normal ω = 0 phase
and the superconducting ω 6= 0 one coincide leading to a finite free
energy difference, as we shall see below.

We shall now proceed to calculate the free energy F , related to
the Euclidean on-shell action according to

F = T z S E |on shell (25)

Before proceeding to the Wick rotation of the action we insert the
ansatz (13) in Eq. (10)

S = − V

2T z

Z
du

1

u3+z

µ
−r2−z

H u2z+2¡φ0¢2

− r−z
H

u2z+2

gz(u)
ω2φ2 + rz

H u4¡ω0¢2
gz(u)

¶
(26)

where V is the two dimensional boundary spatial volume.
We start with the z = 2 case. Integrating by parts Eq. (26) and

using the equations of motion we get

T2

V
S = 1

2

·¡
uφφ0¢¯̄

u=²
− r2

H g(u)

u
ω0ω

¯̄
¯̄
u=²

¸

− 1

2

Z
du

u

r2
H g(u)

φ2ω2 (27)

Here ² is a cut-off which will be put to zero at the end of the cal-
culations. As discussed above, we choose to work in the canonical
ensemble and hence we add a boundary term to the action [17]
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−1

2

Z
dt d2x

√−g AμF uμ
¯̄
u=²

= V

2T2

·¡
uφφ0¢¯̄

u=²
− r2

H g(u)

u
ω0ω

¯̄
¯̄
u=²

¸
(28)

After a Wick rotation, using Eq. (25) and the boundary behavior of
the gauge field the free energy density at fixed charge takes the
form

F
V

= −ρμ + 1

2

Z
du

u

r2
H g(u)

φ2ω2 + 1

2
ρ2 ln(u)

¯̄
u=²

(29)

The logarithmic divergent term in the r.h.s. will play no role when
comparing the free energies of the solutions with ω 6= 0 with that
of the normal ω = 0 case which has the same divergent term so
that one ends with

1F
V

= F −Fn

V
= −ρμ + 1

2

Z
du

u

r2
H g(u)

φ2ω2, z = 2 (30)

Proceeding in the same way in the z = 4 case, we find

1F
V

= −ρ(μ − μn) + 1

2

Z
du

u3

r2
H g(u)

φ2ω2, z = 4 (31)

where μn is the chemical potential of the normal phase.
Before discussing the numerical solutions of Eqs. (14)–(15) we

shall develop an analytic approach which allows to calculate the
critical temperature and the behavior of the order parameter with
remarkable accuracy. The method is based on a proposal pre-
sented in Ref. [18] which consists in obtaining solutions in close
form by imposing conditions of continuity and smoothness at
a point um intermediate between the boundary (u = 0) and the
horizon (u = 1). Originally um was arbitrarily chosen to be 1/2
and rather good results in comparison with more involved numer-
ical methods were obtained. As discussed in [19] the agreement
stems from rather elementary considerations on perturbation of
Schrödinger-like equations. We here extend the method in order
to determine um from a simple free energy argument and in this
way, the method turns out to be a powerful tool to study the be-
havior of the system as a function of z.

In practice, we shall consider expansions of the fields near
u = 1 and u = 0 and determine their leading orders coefficients by
connecting the expansions at u = um . We start from the case z = 2.
For the solution near the horizon (u = 1) we have, up to second or-
der in the expansions of the fields we call ωh(u) and φh(u),

ωh(u) = ωh
0 + ωh

1(u − 1) + 1

2
ωh

2(u − 1)2

φh(u) = φh
0 + φh

1(u − 1) + 1

2
φh

2(u − 1)2 (32)

where ωh
i , φh

i , are constants to be determined. The superscript h
indicates that the expansion is performed near the horizon. Now,
conditions (16) at u = 1 imply that

φh
0 = 0, φh

2 = 1

4
φ1

µ
2 + ω2

H

r2
H

¶
(33)

ωh
1 = 0, ωh

2 = − 1

16

φ2
1ωH

r4
H

(34)

We now insert these relations in Eq. (32) and match the expan-
sions of ω and φ and their derivatives at u = um . From this we
get
φ1 = − 4r2
H√

1 − um
, Ω = ωH

um
(35)

ωH =
µ

2r2
H

2 − um

1 − um
− ρ

2um(1 − um)1/2

¶1/2

(36)

At this point we can write rH in terms of the temperature T using
Eqs. (9)

Ω = 1

um

µ
4π T2

2 − um

1 − um
− ρ

2um(1 − um)1/2

¶1/2

(37)

Determination of the point at which the order parameter Ω van-
ishes leads to the critical temperature

T c
2 = 1

8π

(1 − um)1/2

um(2 − um)
ρ. (38)

One can also infer the temperature dependence of the condensate
close to the phase transition

Ω = N2(um)
¡
4π T c

2

¢1/2
µ

1 − T

T c
2

¶1/2

(39)

N2(um) = 1

um

µ
2 − um

1 − um

¶1/2

(40)

Similar calculations with z = 4 yield, using Q 2 = 8r4
H

φ1 = − Q 2

(1 − um/2)1/2(1 − um)1/2
, Ω = ωH

u3
m(2 − um)

(41)

ωH = −21/4
µ

Q
4 − 3um

um − 1
+ 4ρ

Q 2

(2 − um)1/2

u3
m(1 − um)1/2

¶1/2

(42)

which defines the critical temperature as

T c
4 = (2 − um)1/2(1 − um)1/2

25/2πu3
m(4 − 3um)

ρ (43)

Finally for the behavior of the order parameter near the critical
temperature we obtain

Ω = N4(um)
¡
16π T c

4

¢1/4
µ

1 − T

T c
4

¶1/2

(44)

N4(um) = 1

u3
m

(4 − 3um)1/2

(2 − um)(1 − um)1/2
(45)

We then see that both for z = 2 and z = 4 the behavior of Ω

near the critical point reveals a typical scenario of a second or-
der phase transition, with an ordered phase ω 6= 0 for T < T c

z in
agreement with the results in the most diverse relativistic models
explored using the gauge/gravity duality, with critical exponents
coinciding with those obtained within the mean field approxima-
tion, independently of the choice of um .

To confirm the results obtained above we have still to compare
the free energy associated to the solution we have found with that
for the disordered (normal) phase which corresponds to ω = 0.
If the difference of free energies 1F is negative below the critical
temperature then a phase with non-vanishing order parameter will
be preferred for T < T c

z . This fact will allow us to determine um

as a function of ρ , from minimization of 1F written in terms of
expansion (32) from the horizon to um and of expansions (19)–(20)
from the boundary to um ,
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Fig. 1. The numerical result for the condensate as a function of temperature for the z = 2 (left) and z = 4 (right) cases. The condensate goes to zero as (T − T c)1/2 in both
cases thus confirming the analytic results (Eqs. (39), (44)).
1F
V

= −ρ(μ − μn) + 1

2

umZ
0

du
u

r2
H g(u)

¡
φbωb¢2

+ 1

2

1Z
um

du
u

r2
H g(u)

¡
φhωh¢2

(46)

where φb and ωb are given by (19) for z = 2 and (21) for z = 4.
Note that we have not included the divergent term in (46) since
we are working at fixed ρ and hence such term is um independent.
Minimization of Eq. (46) gives a solution for um which, inserted in
Eqs. (38) and (43) gives the following critical temperature coeffi-
cients

T c
2 = 0.022ρ, T c

4 = 0.025ρ (47)

We will confirm below this scenario and compare these results
with those obtained by solving the equations of motion numer-
ically. Before doing this let us note that the critical temperature
obtained analytically increases when changing from the z = 2 to
the z = 4 system. To determine whether this is a general behavior
for arbitrary values of z is relevant in connection with the the-
ory of Fermi liquids [10]. To analyze this issue in more general
terms one can take for illustrative purposes the following black
hole function

g(u; z) = 1 − uz (48)

which includes the actual Lifshitz z = 2 and z = 4 black hole so-
lutions studied previously. From Eq. (8) one can write rH in terms
of z and T and then, using the analytical approach one can con-
firm that, for black holes of the form (48), T c

z is a growing function
of z for z > 2 for any choice of um .

We now proceed to solve the equations of motion numerically.
The strategy is the following: the solutions are searched as func-
tions of the parameters ωH and φ1 at the horizon with vanishing
constant term for φ and with general non-vanishing ω0 at the
boundary (see Eqs. (16)–(19)). Then the numerical system is solved
searching possible values of φ1 at the horizon for which ω0 van-
ishes. In this way we have obtained a set of solutions for different
field values at the horizon. The existence of several solutions satis-
fying the appropriate boundary conditions, each one corresponding
to a different value of φ1, is a phenomenon already present in
the relativistic case [16]. For increasing values of φ1 the solution
for ω has an increasing number of nodes n. Now, evaluation of the
free energy shows that it increases with the number of nodes and
hence we conclude that solutions with n > 1 are energetically dis-
favored so that we shall solely discuss the zero-node solution.

Our numerical solution confirms the results found analytically:
a finite temperature continuous symmetry breaking phase tran-
sition takes place both for z = 2 and z = 4. As shown in Fig. 1
the system condensates at a critical temperature Tc . The behavior
near Tc can be seen, by fitting the curve, to correspond to a sec-
ond order transition with critical exponent 1/2 as advanced by the
analytical result, Eqs. (39)–(44). It should be stressed that profiles
for z = 2 and z = 4 are strikingly resemblant. What distinguishes
the two cases is the value of the critical temperatures:

T c
2 = 0.023ρ, T c

4 = 0.031ρ (49)

Comparing these values with those obtained previously using the
analytic approach Eqs. (47) we find a remarkable agreement.

Note that at low temperature the condensates appear to diverge
as a negative power of the temperature. This behavior was already
encountered in the relativistic z = 1 case, both for s-wave [20] and
p-wave [16] holographic superconductors and can be ascribed to
the relevance of back-reaction when the condensate becomes too
large so that the probe approximation is no more valid. Using again
Eq. (48) as an illustration, our analytical approach shows that the
behavior of the condensate for T small – in the range of validity
of the probe approximation – is Ω ∝ T −(z−2)/2z for z > 2 indepen-
dently of the choice of the matching point um .

Using formulae (30)–(31) we have computed numerically the
free energy difference between the ordered and disordered phases
(see Fig. 2) confirming that, both for z = 2 and z = 4, the ordered
phase is preferred below the critical temperature T c

z whose values
coincide with those given by (49).

Finally, we shall compute the electromagnetic response to small
time dependent perturbations of the Yang–Mills field in the or-
dered phase. To do this, we start from the gauge field ansatz (13)
(that we shall denote Aord

μ (u) for clarity) and following [16] we
consider the perturbation

Aμ = Aord
μ (u) + aμ(u, t) (50)

aμ dxμ = e−iw f t£¡a1
t τ

1 + a2
t τ

2¢dt + a3
xτ

3 dx + a3
yτ

3 dy
¤

(51)

with w f the frequency associated to the perturbation. The lin-
earized Yang–Mills equations read

1√−g
∂μ

¡√−gFμνa¢ − ²abcFνμ
b Aμc − ²abc F νμ

b aμc = 0 (52)

where

Fa
μν = ∂μaa

ν − ∂νaa
μ − ²abc Aμbaνc + ²abc Aνbaμc (53)

Using Eqs. (13), (51) one finds four second order equations

a3
y
00 +

µ
1 − z

u
+ g0(u)

g(u)

¶
a3

y
0 + w2

f u2z−2

r2z g2(u)
a3

y − ω2

r2 g(u)
a3

y = 0 (54)

H H
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Fig. 2. The free energy difference between the condensed and the uncondensed phase as a function of temperature for the z = 2 (left) and the z = 4 (right) models.

Fig. 3. Real and imaginary parts of conductivity as a function of the frequency for T /ρ = 0.022 for the z = 2 system. The solid line corresponds to σxx and the dashed one
to σyy . The insert figure on the right displays a detail of the imaginary part of σyy rendering visible the pole at ω f = 0.
a3
x
00 +

µ
1 − z

u
+ g0(u)

g(u)

¶
a3

x
0

+ u2z−2

r2z
H g2(u)

¡−iw f ωa2
t + w2

f a3
x − ωφa1

t

¢ = 0 (55)

a1
t
00 + z − 1

u
a1

t
0 + ωφ

r2
H g(u)

a3
x = 0 (56)

a2
t
00 + z − 1

u
a2

t
0 − ω2

r2
H g(u)

a2
t − iw f ω

r2
H g(u)

a3
x = 0 (57)

and two first order equations

iw f a1
t
0 + φa2

t
0 − φa2

t
0 = 0 (58)

iw f a2
t
0 − φa1

t
0 + φ0a1

t − g(u)u2−2z¡ω∂u − ω0¢a3
x = 0 (59)

Let us concentrate on the case z = 2. The choice of the electro-
magnetic perturbation should correspond to a wave traveling away
from the conformal boundary at u = 0 (an “in-going” wave). In the
present case one has, near the horizon

a3
y = α

¡
1 − u2¢− iw f

2r2
H (1 + · · ·)

a3
x = β(1 − u)

−i
w f

2r2
H

¡
1 + a1(1 − u) + · · ·¢ (60)

a1
t = γ (1 − u)

−i
w f

2r2
H

¡
a2(1 − u)2 + · · ·¢

a2
t = δ(1 − u)

−i
w f

2r2
H

¡
a4(1 − u) + · · ·¢ (61)

with α, . . . , γ dimensionful constants. At the boundary we have
instead
a3
y = a3

y(0) + u2a3
y(2) + · · · , a3

x = a3
x(0) + u2a3

x(1) + · · · (62)

a1
t = a1

t(0) + a3
t(1) ln(u) + · · · , a2

t = a2
t(0) + a2

t(1) ln(u) + · · ·
(63)

where all coefficients ai can be determined as functions of ω and φ

at the horizon once w f is specified.
The conductivity can then be obtained using Ohm’s law. Follow-

ing [16] for the case of non-Abelian gauge fields, the conductivity
components are

σyy = −i
r2

Ha3
y(2)

w f a3
y(0)

σxx = − ir2
H

w f a3
x(0)

µ
a3

x(1) + Ω
iw f a2

t(0) + μa1
t(0)

μ2 − w2
f

¶
(64)

We show the numerical solution for the real and imaginary parts
of σxx and σyy for the z = 2 system in Fig. 3. As in the rela-
tivistic case the conductivity components approach 1 at large w f .
We observe the formation of a gap in the real part of σyy as it
happens in the case of a Maxwell field coupled to a scalar [20]
and in the purely Yang–Mills [16] bulk Lagrangians cases. There is
a pole in the imaginary parts of σxx and σyy at w f = 0 charac-
teristic of superconducting behavior. There is a second pole in the
imaginary σxx at w f = w∗

f = 0.199ρ at T /ρ = 0.022 accompanied
by the corresponding delta function in its real part, in agreement
with Kramers–Kronig relations (this delta function is not repre-
sented in Fig. 3 left since the numerical procedure can only render
continuous functions). The w∗

f value obtained numerically satisfies
w∗

f = μ as expected from Eq. (64). This pole is absent in the anal-
ysis of [14] for a bulk Yang–Mills Lagrangian in the background of
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a different z = 2 Lifshitz black hole (the one presented in [4] with
g2(u) = (1 − u4) arising in the case in which the dilaton field is
dynamical, instead of the one we have used, Eq. (5)). In [14] such
absence was attributed to the logarithmic behavior of A0 resulting
from the z = 2 scaling. Our result shows that for the z = 2 black
hole background that we used such logarithmic behavior does not
prevent the existence of this pole.

The analysis of the z = 4 theory follows similarly and the
behavior of conductivity components is qualitatively the same.
We also find in this z = 4 case, with g4(u) = 1 − u4, a second pole
located at w∗

f = 20.5ρ for T /ρ = 0.022.
We shall end this work with a brief summary and a discus-

sion of our results. We have studied finite temperature effects in
two models with different dynamical critical exponent using the
gauge/gravity correspondence. Looking for a vector order param-
eter and inspired by Gubser and Pufu’s work on z = 1 p-wave
holographic superconductors [16], we have chosen as gravity dual
a Yang–Mills theory in the gravitational background of Lifshitz
black holes with z = 2 and z = 4. Apart from solving the equa-
tions of motion in the bulk using a numerical approach, we have
also extended the analytical approximation developed in [18,19]
which allows to reproduce the numerical results with remarkable
simplicity and precision.

Although one could presume that the anisotropic scaling of the
background metric would lead to a critical behavior differing from
the one found in [16] for z = 1, our results show instead a remark-
able resemblance with the relativistic case. In particular, the con-
densate has the typical (T c

z − T )1/2 mean field behavior for T close
to the critical temperature T c

z both for z = 2 and z = 4. The depen-
dence on z only affects the coefficient in the critical temperature
which grows with z, a behavior that could be argued to be valid
for arbitrary z, as we illustrated applying our analytic approach to
a heuristic black hole function g(u; z) defined in Eq. (48). Using the
same approach we were able to extract the condensate behavior in
the range of small temperatures where the probe approximation
is valid, finding that Ω ∝ T −(z−2)/2z , in total agreement with the
numerical calculations. All these results confirm that the analytic
approximation developed in [18,19] and refined here has proved
to be sufficiently accurate as to avoid the necessity to resort to
numerical methods.
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