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1 Introduction

Different problems in theoretical Physics suggest the existence of hidden sectors. These

consist of SU(3)× SU(2)× U(1) singlet fields. Indeed, since many extensions of the Stan-

dard Model propose the existence of additional product gauge groups (from Technicolor

to Heterotic string inspired models), we have reasons to imagine that there are particles

transforming under the new gauge fields, but not under the familar local symmetries.

One possible way of coupling the ‘hidden’ and the ‘visible’ sectors is mediated by the

Higgs field; these are called Higgs-portals. These models propose an interaction of the form

Lint ∼ αΦΦ∗XX∗, where α is the coupling, Φ is the recently measured Higgs particle and

X a complex field in the hidden sector [1–3].

On the other hand, different models of Supersymmetry (SUSY) breaking also propose

the existence of a hidden sector generating the dynamics that breaks SUSY, hence avoid-

ing the constraints imposed by sum-rules on the masses of superpartners. In this case,

the interest focuses on the mechanism of communication between the hidden and visible

sectors. In the work [3], a mechanism was proposed that used a renormalisable interaction

between two U(1) gauge fields, one visible Aµ with curvature Fµν and one hidden Cµ,
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with field strength Gµν . The interaction Lagrangian is Lint ∼ ξFµνG
µν and was originally

proposed in [4]–[6]. This interaction can be generated at arbitrarily high energies and is

not suppressed by powers of the scale, due to the marginal character of the operator. It

was argued by the authors of [3] that this type of interactions are generically induced by

one-loop effects and are naturally expected to appear in String theory models.

As explained in [6], gauge-gauge interactions of the form discussed above, can be

diagonalised and the system becomes that of two decoupled gauge fields at the expense

of charging the matter fields (hidden and visible) under both U(1)’s. This implies that

the matter fields will develop a small charge — if the parameter ξ is small1 — under the

hidden and visible gauge symmetries. Astrophysical observations place strong constraints

on milli-charged matter [8]. Hence, in what follows, we will consider that the hidden

U(1) group is spontaneously broken. Indeed, if this hidden U(1) were not broken, ‘hidden

photons’ would interfere with and spoil the process of nucleosynthesis. Also, experiments

such as laser polarisation or light shining through a wall [9] tightly constrain the value of

the parameter ξ.

The reader may wonder about more generic versions of the interaction, involving for

example non-Abelian gauge groups. It can be seen that below the scale of breaking, the

dynamics is well captured by the Abelian interaction we are discussing, see [10]. Hence,

an accurate description of the low energy dynamics of our system consists of two coupled

Abelian Higgs Models. This is what we will do in this paper to study the dynamics of

topological objects.

Supersymmetric versions of the models with gauge-gauge interactions, like the ones

we are discussing above present various appealing features. Among them, that the hid-

den sector will provide (if R-parity preserving) a candidate for dark matter. Hence, the

dynamics of dark matter and its interaction with the Standard Model particles is another

strong motivation to consider these models.

In this context, the problem of Physics that guided the present investigation is the dy-

namics of ‘hidden’ (or ‘dark’) strings that appear in these systems. These dark-strings [10]–

[13], have a tension of the order of the symmetry breaking scale µ ∼ (TeV)2. They are not

detectable by their gravitational effects on the CMB, but their coupling to the Standard

Model fields (the milli-charged particles already mentioned) can make the dark strings ob-

servable via Bohm-Aharonov effect or by scattering of the Standard Model particles with

the string core [10]. The cosmological and astrophysical signatures and consequences of

these effects were studied, for example in [14, 15]. See also [16, 17] for various phenomeno-

logical aspects of these objects.

In this work, we will give a step towards the understanding of these dark strings by

investigating them as BPS objects.

To summarise our motivations and framework, we have discussed the phenomenological

interest (either for Beyond the Standard Model scenarios or Dark Matter models) of two

type of interactions between hidden/dark and visible sectors; gauge kinetic mixing term

1If the number ξ is not smaller than 10−3 this interaction seems to be ruled out experimentally [7].
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and Higgs portal interactions,

LGKM =
ξ

2
FµνG

µν , LHP = −αΦ†ΦX∗X . (1.1)

Now, with Supersymmetry, a gauge mixing term automatically implies the occurrence of a

Higgs portal. Indeed, the mixing of the two auxiliary fields D, D′ belonging to the gauge

multiplets forces a mixing of the scalars in the chiral superfields. We also need to add

Fayet-Iliopoulos terms in such theories, which orchestrate, via the Higgs mechanism, the

needed spontaneous breaking of the gauge groups. A discussion of new Physics arising

from this mixing can be found in [18] and references therein.

As anticipated above, our system of interacting visible and hidden fields will be ac-

curately described at observable scales by two Abelian Higgs Models coupled by a gauge

kinetic mixing interaction. When these visible and/or hidden U(1) gauge symmetries are

spontaneously broken, the classical equations of motion have vortex solutions, which could

be interpreted as visible and dark strings [10]–[13]. Properties of such vortex configura-

tions arising in Abelian Higgs models with the gauge kinetic mixing of eq. (1.1) have been

discussed in [11]–[19]. However, except for very particular cases where the Ansätze for

the gauge potentials are equal [11], no first order self-dual equations have been found by

establishing an energy bound “à la Bogomol’nyi [20] — see the discussion in [19].

Here we propose a different approach to this problem. As observed in [20]–[21], the

classical equations of motion of the Abelian Higgs model originally discussed by Nielsen-

Olesen [22] can be reduced to first-order self-duality equations when the gauge and quartic

scalar self-interaction coupling constants obey a relation naturally imposed by supersym-

metry. The theory then coincides exactly with a particular bosonic sector of a highly

supersymmetric parent theory. The logic of this connection was understood after the work

of Olive and Witten on Bogomol’nyi equations for kinks and dyons [23] and discussed in

detail in the case of vortices in [24]–[26].

In more precise terms, the gauge theory with spontaneous symmetry breaking and a

topological charge associated with the vortex magnetic flux, can be thought of as being

part of an N = 2 supersymmetric extension to the original model. Its energy is bounded

by the N = 2 central charge that is proportional to the topological charge induced by

the vortices [24]. Furthermore, this bound is saturated when the fields obey a set of first

order equations, the Bogomol’nyi-Prasad-Sommerfeld (BPS) equations. Solutions of these

equations naturally have finite energy and therefore are well-suited to study objects like

vortices. These arguments, formulated for just one Abelian Higgs model, extend naturally

to a theory with a mixture of two such models as described earlier, with gauge kinetic

mixing and Higgs portal type interactions.

It is the purpose of this work to derive such extension. The paper is organized as

follows: in section 2 we present theN = 2 supersymmetric extension of a (2+1) dimensional

theory in which two Abelian Higgs models are coupled through a gauge kinetic mixing,

showing how a Higgs portal interaction necessarily arises. Starting from the supersymmetry

transformations, in section 3 we obtain the Bogomol’nyi equations and the energy of the

system, bounded by the topological charge. In section 4 we present the N = 2 supercharge
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algebra, which explains the connection between the central charge and the visible and

hidden magnetic fluxes. Both in sections 3 and 4. A careful numerical analysis of the vortex

solutions is presented in section 5. An alternative derivation of the main results based on

diagonalization of the supersymmetric Action is described in section 6. A summary and

discussion of our results is presented in section 7.

2 The N = 2 supersymmetric model

As discussed in the introduction, vortex solutions in a model with two U(1) gauge fields Aµ

and Cµ, each one coupled to complex scalar fields s and t respectively and a gauge kinetic

coupling were constructed in [19]. Although the model is defined in d = 3 + 1 space-time

dimensions, the proposed vortex ansatz corresponds to axially symmetric configurations

that are independent of one of the three spatial directions and hence the equations of

motion that they obey can be obtained from a 2+ 1 dimensional action. Indeed, magnetic

vortex configurations in the Abelian Higgs model were originally discussed [22] as static,

z-independent classical solutions of the Abelian Higgs model in 3+1 dimensions Minkowski

space. Being z-independent, they can be also taken as static solutions in 2 + 1 dimensions

where the supersymmetric extension can be more easily formulated. We shall take this point

of view. Hence, static magnetic vortices instead of being “tubes” of quantized magnetic

flux as in the 3+1 case, have to be considered, in 2+1 dimensions, as disks defined on the

(x, y) plane. The magnetic field, instead of being a (pseudo)vector becomes a (pseudo)scalar

concentrated on the disk with the Higgs field being approximately zero inside the disk and

taking its vacuum expectation value outside it.

The 2+ 1 action governing the dynamics of the model discussed in [19] can be written

in the form,

S =

∫

d3x

(

− 1

4
FµνF

µν− 1

2
s†�̂s−V1(s)−

1

4
GµνG

µν− 1

2
t†�̃t−V2(t)+

ξ

2
FµνG

µν

)

, (2.1)

where d3x = dtdxdy = dtrdrdϕ,

�̂ = (∂µ − ieAµ)(∂
µ − ieAµ) , �̃ = (∂µ − igCµ)(∂

µ − igCµ) ,

Fµν = ∂µAν − ∂νAµ , Gµν = ∂µCν − ∂νCµ ,
(2.2)

and the symmetry breaking potentials are,

V1(s) =
a

4

(

|s|2 − s20
)2
, V2(t) =

b

4

(

|t|2 − t20
)2
. (2.3)

The second order equations of motion derived from this Action in eq. (2.1) reveal a very

rich structure of vortex solutions and the dependence on the parameters of the theory

shows a large variety of phenomena that could be of interest in connection to the problems

described in the introduction. Solutions have been found numerically, by solving the second

order equations of motion, since it was not obvious how to find Bogomol’nyi equations for

this system, due to the gauge-mixing term.

– 4 –



J
H
E
P
0
2
(
2
0
1
5
)
1
5
6

As it is well known the existence of Bogomol’nyi equations is closely related to the exis-

tence of a N = 2 extensions of purely bosonic models exhibiting kinks, vortices or monopole

solutions [21]–[26]. In general, such extensions are only possible for very particular sym-

metry breaking potentials (or even for vanishing potential, as it is the case for models

with monopole or dyon solutions). Indeed, the form of these potentials is a requirement

for supersymmetry to hold. Then, a practical way to find models accepting Bogomol’nyi

equations is to formulate the problem in superspace, without an explicit potential, and let

the supersymmetry algebra guide us towards the correct form for the action, that will have

its coupling constants in the right ratios.

2.1 The supersymmetric action

Three-dimensional N = 2 supersymmetry can be obtained by dimensional reduction from

the equivalent N = 1 four-dimensional theory. In practice, the supersymmetry represen-

tations are tractable by themselves, though we will keep the connection with the higher

dimensional theory in mind during the process.

Let us first set up the technical tools needed to construct the SUSY extension of the

model in eq. (2.1). In order to enforce two copies of supersymmetry one needs two sets of

Grassmann variables θα, θ̄α. Note that there is only one spinor representation in three-

dimensions. We work with the (+ − −) signature, contract indices using ǫαβ , and choose

the following γ-matrices,

γ0 =

(

1 0

0 −1

)

, γ1 =

(

0 1

−1 0

)

, γ2 =

(

0 i

i 0

)

, (2.4)

so that γµγν = ηµν + iǫµνργρ. We will abuse the bar notation: over spinorial coordinates,

this refers to two independent quantities, but if λ is a (complexified) fermion field, then

λ̄ = γ0λ† is not independent. We write the super-derivatives analogously to those in the

d = 3 + 1 dimensional case

Dα = ∂α + i(γµθ̄)α∂µ , D̄α = ∂̄α + i(θγµ)α∂µ , {Dα, D̄β} = 2iγµαβ∂µ . (2.5)

We also use the standard chiral hypermultiplet representation Φ for the matter fields.

It contains one complex scalar s and one full Dirac spinor i.e. two independent Majorana

spinors written as one complex spinor ψ, along with a complex auxiliary F-term. This

auxiliary field will not play any relevant role, since as we shall see, our bosonic theory is

realised without a superpotential. We define these individual components by the action of

the super-derivatives on the field, evaluated at θ = θ̄ = 0; we denote the evaluation with |.
Hence,

Φ| = s , DαΦ| = ψ̄α , DαDβΦ| = γµαβ∂µs+ ǫαβF , DαDβD̄βΦ| = (/∂ψ̄)†α
(2.6)

and

Φ†| = s†, D̄αΦ
†| = ψα , D̄αD̄βΦ

†| = (γµαβ∂µs+ ǫαβF )
†, DαD̄αD̄βΦ| = (/∂ψ)α .

(2.7)
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The other matter superfield Ψ is treated identically and contains the scalars t, a Dirac

fermion σ and an auxiliary field G.

The vector multiplet U possesses one real scalar M , two Majorana fermions written

as one complex fermion λ = χ + iρ and one gauge field Aµ, along with several auxiliary

fields, all but one of which we can choose to ignore in the Wess-Zumino gauge. The only

auxiliary field we cannot gauge away in this multiplet, we will call it D. Thus we define,

DαD̄βU | = ǫαβM + γµαβAµ , D2D̄2U | = D , D2D̄αU | = χ̄α , DαD̄2U | = ρα .

(2.8)

The standard gauge-invariant curvature tensor Wα and its conjugate can be defined to

generate the canonical kinetic term. In three dimension there exists an extra representation

called the linear multiplet Σ = D̄DU which is real and obeys D2Σ = D̄2Σ = 0. This field

proves to be more convenient for component definitions as it contains all the degrees of

freedom at once. Thus, using our previous results we define,

Σ| =M , DαD̄βΣ| = ǫαβD + iγµαβ(iǫµνρ∂
νAρ + ∂µM) , (2.9)

DαΣ| = χ̄α , D̄αΣ| = ρα , DαD̄2Σ| = iγµαβ∂µχβ , D2D̄αΣ| = iγµβα∂µρ̄β . (2.10)

A second multiplet to describe the ‘hidden’ sector, the analogous to Σ, will be called Υ

with bosonic fields Cµ, N , auxiliary field d and fermions τ = ζ+ iω. With these definitions,

we can now write the superspace action for our model;

SN=2 =

∫

d3xd2θd2θ̄

(

1

4
ΣΣ+

1

4
Φ†e−ieUΦ+

1

4
ΥΥ+

1

4
Ψ†e−igV Ψ− ξ

2
ΣΥ+

ies20
2
U +

igt20
2
V

)

.

(2.11)

The final two terms in the action are Fayet-Iliopoulos terms introduced to achieve the

phenomenologically required spontaneous gauge symmetry breaking. Noting that for any

field ∆
∫

d2θd2θ̄∆ =̂ D2D̄2∆| , (2.12)

it is then straightforward to use the previous relations, expand the superfields in compo-

nents and obtain the SUSY-completed action for the pair of coupled Abelian Higgs system.

We assume that the spinors, which all come in pairs, have been complexified according to

λ = χ+ iρ and τ = ζ + iω. It is convenient to write the complete action in the form,

SN=2 = S1(A, s,M,ψ, λ) + S2(C, t,N, σ, τ)− ξSint(A,M,C,N, λ, τ, d,D) , (2.13)

with

S1 =

∫

d3x

(

− 1

4
FµνF

µν − 1

2
s†�̂s+

1

2
D2 − ie

2

(

|s|2 − s20
)

D

− 1

2
M�M − 1

4
M2|s|2 + i

2
ψ̄ /DAψ +

i

2
λ̄/∂λ− 1

2
Mψ̄ψ − e

2

(

ψ̄λs+ s†λ̄ψ
)

)

.

(2.14)
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The action S1, describing the ‘visible’ sector, is invariant under the following transforma-

tions with infinitesimal anticommuting complex parameters η,

δs = η̄ψ , δψ = −iγµηDµ
As− ηMs , δM = η̄λ− λ̄η , δAµ = −iη̄γµλ+ iλ̄γµη

δD = ∂µ(ηγµλ̄− η̄γµλ) , δλ = −ǫµνρ∂µAνγρη − i/∂Mη − iDη . (2.15)

The second (‘dark’) sector has a similar action,

S2 =

∫

d3x

(

− 1

4
GµνG

µν − 1

2
t†�̃t+

1

2
d2 − ig

2

(

|t|2 − t20
)

d

− 1

2
N�N − 1

4
N2|t|2 + i

2
σ̄ /DCσ +

i

2
τ̄ /∂τ − 1

2
Nσ̄σ − g

2

(

σ̄τ t+ t†τ̄σ
)

)

.

(2.16)

The action S2 is invariant under the following transformations,

δt = η̄σ , δσ = −iγµηDµ
Ct− ηNt , δN = η̄τ − τ̄ η , δCµ = −iη̄γµτ + iτ̄γµη

δd = ∂µ(ηγµτ̄ − η̄γµτ) , δτ = −ǫµνρ∂µCνγρη − i/∂Nη − idη . (2.17)

The term coupling the two visible and dark sectors, which is invariant under both sets

of transformations reads

Sint =

∫

d3x

(

− 1

2
FµνG

µν − 1

2
(M�N +N�M) +

i

2
(λ̄/∂τ + τ̄ /∂λ) + dD

)

. (2.18)

Let us discuss the form of the scalar potential derived from the auxiliary fields.

2.2 The scalar potential

In order to obtain the symmetry breaking potential we have to solve the equations of

motion for auxiliary fields D and d whose contribution will be collected in LDd,

LDd =
1

2
D2 +

1

2
d2 − ξdD − ie

2

(

|s|2 − s20
)

D − ig

2

(

|t|2 − t20
)

d , (2.19)

or

LdD =
1

2

(

D d
)

(

1 −ξ
−ξ 1

)(

D

d

)

−
(

D d
)

(

ie
2

(

|s|2 − s20
)

ig
2

(

|t|2 − t20
)

)

. (2.20)

The extrema of this quadratic system is given by,

(

D

d

)

=
1

1− ξ2

(

1 ξ

ξ 1

)(

ie
2

(

|s|2 − s20
)

ig
2

(

|t|2 − t20
)

)

, (2.21)

which gives,

D =
i

2

1

1− ξ2

(

e
(

|s|2 − s20
)

+ ξg
(

|t|2 − t20
)

)

(2.22)

d =
i

2

1

1− ξ2

(

eξ
(

|s|2 − s20
)

+ g
(

|t|2 − t20
)

)

. (2.23)
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Substituting this expression in eq. (2.20) one gets,

LDd = − 1

2(1− ξ2)

(

ie
2

(

|s|2 − s20
)

ig
2

(

|t|2 − t20
)

)

(

1 ξ

ξ 1

)(

ie
2

(

|s|2 − s20
)

ig
2

(

|t|2 − t20
)

)

. (2.24)

So that finally the scalar potential takes the form

V [s, t] =
1

2(1− ξ2)

(

e2

4

(

|s|2 − s20
)2

+
g2

4

(

|t|2 − t20
)2

+
egξ

2

(

|s|2 − s20
)(

|t|2 − t20
)

)

. (2.25)

Clearly this reduces to the usual, decoupled form in the case ξ = 0. To avoid singularities,

the parameter ξ should be constrained so that |ξ| < 1. In fact, as discussed in [19], the

existence of solutions with the appropriate asymptotic boundary conditions imposes such

constraint.

The equations for the extrema of the potential read

e2|s|
(

|s|2 − s20
)

+ geξ|s|
(

|t|2 − t20
)

= 0

g2|t|
(

|t|2 − t20
)

+ egξ|t|
(

|s|2 − s20
)

= 0

and the Hessian matrix is given by

H =
1

2(1− ξ2)

(

3e2|s|2 + e2s20 + egξ
(

|t|2 − t20
)

2egξ|s||t|
2egξ|s||t| 3g2|t|2 + g2t20 + egξ

(

|s|2 − s20
)

)

(2.26)

There are 4 particular types of critical points of interest:

• |s| = |t| = 0: maximum, the vacuum is unstable.

• |s| = 0, |t| =
√

t20 +
eξ
g
s20: saddle point

• |s| =
√

s20 +
gξ
e
t20, |t| = 0: saddle point2

• |s| = s0, |t| = t0: this is the true minimum.

This verifies that we have perturbed each of the Abelian Higgs Models. Let us now turn

to the main point of this procedure, the BPS equations.

3 Bogomol’nyi equations

In this section we will derive BPS equations for the system described in eq. (2.1). We will

follow the well-known procedure, basically imposing that a purely bosonic configuration

preserves part of the SUSY of the action in eq. (2.13).

2These saddle points can disappear if ξ is negative, and if the VEVs and coupling constants take such

values as to make the inside of these square roots negative.
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3.1 BPS states and equations

Starting from the N = 2 supersymmetric action in eq. (2.13) we are interested in finding

a purely bosonic action in which gauge fields and Higgs scalars in the visible and hidden

sectors are coupled in such a way that first order BPS equations do exist. This will be

achieved by enforcing that only the bosonic part of the N = 2 supersymmetric action

eq. (2.13) subsists. Following this procedure one ends with extra adjoint (i.e. ungauged)

scalars for each gauge group, which we also require to be zero.

The rationale behind this procedure is well-known: we are free to impose that phys-

ical states have only the degrees of freedom we desire (gauge particles and squarks) and

not break supersymmetry completely by imposing that the supersymmetric variations of

each vanishing field is identically zero. Such states are called BPS states, because they

saturate the Bogomol’nyi lower bound for the total energy of the system. Recalling the su-

persymmetric variations previously established, and imposing that only our physical fields

appear, we obtain the following set of equations, for an arbitrary infinitesimal spinor η by

demanding that the variations of the fermion fields vanish;

−iγµηDµ
As = 0 , −ǫµνρ∂µAνγρη − iDη = 0 ,

−iγµηDµ
Ct = 0 , −ǫµνρ∂µCνγρη − idη = 0 .

(3.1)

Furthermore, to write the equations leading to magnetic vortex solutions, we shall im-

pose time-independence of our solutions and use the gauge choice A0 = C0 = 0. Rewriting

the above we get,

(−iγ1ηD1
A − iγ2ηD

2
A)s = 0 , −ǫ0ij∂iAjγ0η − iDη = 0

(−iγ1ηD1
C − iγ2ηD

2
C)t = 0 , −ǫ0ij∂iCjγ0η − idη = 0

(3.2)

Then, we multiply the scalar equations by γ1 and notice that in all cases the equations are

proportional to the identity or γ0 times the arbitrary spinor η. The resulting equations,

acting on each of the spinor components, differ only by a sign change, so clearly they cannot

be satisfied both at the same time but are valid for a definite sign choice in all cases. This

is why precisely half of supersymmetry is broken (either the symmetry associated with η+
or η− must be selected). After using the eqs. (2.22)–(2.23) for D and d, the Bogomol’nyi

equations read,

iǫijD
i
As = ±(DA

j s)
∗, ǫij∂iAj = ±1

2

1

1− ξ2
{

e
(

|s|2 − s20
)

+ gξ
(

|t|2 − t20
)}

iǫijD
i
Ct = ±(DC

j t)
∗, ǫij∂iCj = ±1

2

1

1− ξ2
{

g
(

|t|2 − t20
)

+ eξ
(

|s|2 − s20
)}

(3.3)

3.2 The BPS bound for the energy

As a consitency check, we shall re-derive the self-dual equations (3.3) following the Bogo-

mol’nyi approach [20]. This consist in writing the energy as a manifestly positive quantity

plus a topological term. In this way a bound for the energy can be obtained. A set of first

order equations precisely saturate this bound.
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Once the extra scalars M and N , as well as the fermion fields, are put to zero, and the

auxiliary fieldsD and d are written in terms of the dynamical bosonic fields, the Lagrangian

associated to the action in eq. (2.13) reads,

L = −1

4
FµνF

µν − 1

4
GµνG

µν +
ξ

2
FµνG

µν +
1

2
|Dµ(A)s|2 +

1

2
|Dµ(C)t|2 − V. (3.4)

Where

V =
1

2(1− ξ2)

(

e2

4

(

|s|2 − s20
)2

+
g2

4

(

|t|2 − t20
)2

+
egξ

2

(

|s|2 − s20
)(

|t|2 − t20
)

)

. (3.5)

We are looking for static vortex-like classical solutions to the equation of motion in

the gauge A0 = C0 = 0, which have quantized magnetic fluxes associated to Ai and Ci

ΦA =

∮

Aidx
i =

2πn

e
, ΦC =

∮

Cidx
i =

2πk

g
, n, k ∈ Z . (3.6)

To this end, it is convenient to introduce dimensionless variables,

xi → xi/es0 , Ai → Ais0 , s→ ss0 , Ci → Cis0 , t→ ts0 (3.7)

and the coupling constants and gauge field masses ratios,

er ≡ g/e , µ2 ≡ e2rt
2
0/s

2
0 . (3.8)

In terms of these fields, the total energy of the system is

E

ℓ
= s20

∫

d2x

{

B2
A

2
+
B2

C

2
+
1

2
|∂is−iAis|2+

1

2
|∂it−ierCit|2−ξBABC+V

(

|s|
)

+V
(

|t|
)

+Vint

}

,

(3.9)

with ℓ = 1/(es0) and magnetic fields BA and BC defined as,

BA = ǫij∂iAj = F12 , BC = ǫij∂iCj = G12 . (3.10)

Concerning the potentials, we have

V
(

|s|
)

=
1

8(1− ξ2)

(

|s|2 − 1
)2
, V

(

|t|
)

=
e2r

8(1− ξ2)

(

|t|2 −
(

µ

er

)2
)2

, (3.11)

and

Vint =
erξ

4(1− ξ2)

(

|s|2 − 1
)

(

|t|2 −
(

µ

er

)2
)

. (3.12)

To study the equations of motion, let us introduce a cylindrically symmetric ansatz for the

fields, in terms of radial functions as

Aϕ =
α(r)

r
, Cϕ =

γ(r)

err
, s = ρ(r)eiϕ, t = p(r)eiϕ. (3.13)
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The energy density in terms of the radial functions takes the form

E =
1

2r2

(

dα

dr

)2

+
1

2r2e2r

(

dγ

dr

)2

+
1

2

(

(

dρ

dr

)2

+ (α− 1)2
ρ2

r2

)

+
1

2

(

(

dp

dr

)2

+ (γ − 1)2
p2

r2

)

− ξ

er

dα

dr

dγ

dr
+ V (ρ) + V (p) + Vint (3.14)

It is clear from the equation above that if the parameter ξ/er gets bigger, the magnetic

energy diminishes.

Concerning the second order radial equation of motion they read,

r
d

dr

[

1

r

d

dr

(

α+
ξ

er
γ

)]

+ (1− α)ρ2 = 0 , (3.15)

r
d

dr

[

1

r

d

dr
(γ + ξerα)

]

+ e2r(1− γ)p2 = 0 , (3.16)

1

r

d

dr

[

r
d

dr
ρ

]

− 1

r2
(α− 1)2ρ− 1

2(1− ξ2)

(

ρ2 − 1 + erξ

(

p2 − µ2

e2r

)

)

ρ = 0 , (3.17)

1

r

d

dr

[

r
d

dr
p

]

− 1

r2
(γ − 1)2p− e2r

2(1− ξ2)

(

p2 − µ2

e2r
+

ξ

er
(ρ2 − 1)

)

p = 0 . (3.18)

Notice that in the limit case of ξ = er = µ = 1, the kinetic term for the combination of

gauge fields α− γ decouples.

In view of the well-known connection between BPS states and the Bogomol’nyi bound

to the energy [23]–[24], we know that the solution to eqs. (3.3) also solve the equations of

motion in eqs. (3.15)–(3.18). Indeed, the energy in eq. (3.9) can be rewritten as a manifestly

positive quantity, by “completing the square”, which in this case is not just a square but

a positive definite quadratic form.

E =

∫

d2x

(

1

2

(

BA ∓ 1

2

1

(1−ξ2)
(

e
(

|s|2−s20
)

+ ξg
(

|t|2−t20
)

)

)2

+
1

2

(

BC ∓ 1

2

1

(1−ξ2)
(

g
(

|t|2−t20
)

+ ξe
(

|s|2−s20
)

)

)2

−ξ
(

BA ∓ 1

2

1

(1−ξ2)
(

e
(

|s|2−s20
)

+ ξg
(

|t|2−t20
)

)

)

×
(

BC ∓ 1

2

1

(1−ξ2)
(

g
(

|t|2−t20
)

+ ξe
(

|s|2−s20
)

)

)

+

(

1

2

∣

∣εijDj [A]sa ∓ ǫabDi[A]sb
∣

∣

2
+

1

2

∣

∣εijDj [C]ta ∓ ǫabDi[C]tb
∣

∣

2 ± ∂iJi

)

)

.

(3.19)

Here we have written the real and imaginary components of the scalar fields as sa with

a = 1, 2 respectively and defined covariant derivatives as

Disa = ∂isa + ǫabAisb , (3.20)
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and analogously for the hidden scalar field ta. All but the last term in this energy are

part of a positive-definite quadratic form, so that this part of the energy is always positive.

Concerning the last term — generated to complete the form — the current Ji is given by

Ji = εij

(

εab
(

saDj [A]sb +Aj

)

)

+ εij

(

εab

(

taDj [C]tb +
1

er
Cj

)

)

. (3.21)

Using Stoke’s theorem and using the fact that covariant derivatives vanish at infinity (since

we impose finite energy for our solutions) one ends with the Bogomol’nyi bound for the

energy which written in terms of the original (unscaled) fields reads

E ≥ es20|ΦA|+ et20|ΦC | = s202π|n|+ t202π|k| (3.22)

The bound is attained when each one of the squares in eq. (3.19) vanish, this leading

precisely to the already obtained equations (3.3), that written in terms of the Ansatz read

dρ

dr
= (−1 + α)

ρ

r
, (3.23)

dp

dr
= (−1 + γ)

p

r
, (3.24)

1

r

dα

dr
= ± 1

2(1− ξ2)

[

(ρ2 − 1) + erξ

(

p2 − µ2

e2r

)]

, (3.25)

1

r

dγ

dr
= ± 1

2(1− ξ2)

[

er

(

p2 − µ2

e2r

)

+ ξ(ρ2 − 12)

]

. (3.26)

Note that if ξ = ±1 in eq. (3.19) the purely positive part of the energy degenerates

and can be factorised again into a simpler expression.

In summary, we have obtained the BPS equations for our system in eq. (2.1). We will

now study how its topological charge can be re-obtained using a different approach, based

on the SUSY algebra.

4 Supercharges

The N = 2 action of eq. (2.13) is invariant under two super-transformations, detailed in

eqs. (2.15) and (2.17). The fermionic Noether charge associated with these invariances is

given by,

Q̄η =
∑

ζ∈fermions

δS

δ(∂0ζ)
δηζ . (4.1)
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This gives the following expressions

Q̄ =

∫

d2x

(

(λ̄−ξτ̄)γ0
(

− 1

2
ǫµνρFµνγρ−i/∂M−iD

)

+(τ̄−ξλ̄)γ0
(

− 1

2
ǫµνρGµνγρ−i/∂N−id

)

)

+ σ̄γ0
(

− i(/∂ − ig /C)t− 1

2
Nt

)

+ ψ̄γ0
(

− i(/∂ − ie /A)s− 1

2
Ms

)

)

. (4.2)

Q =

∫

d2x

(

(

− 1

2
ǫµνρ(Fµν − ξGµν)γρ + i/∂(M − ξN) + i(D − ξd)∗

)

γ0λ

+

(

− 1

2
ǫµνρ(Gµν − ξFµν)γρ + i/∂(N − ξM) + i(d− ξD)∗

)

γ0τ

+

(

i(/∂ + ig /C)t∗ − g

2
Nt∗

)

γ0σ +

(

i(/∂ + ie /A)s∗ − e

2
Ms∗

)

γ0ψ

)

(4.3)

These charges have been rewritten in terms of the fermionic fields (in Q) and their

conjugate momenta (in Q̄) so as to more easily impose canonical anti-commutation relations

later on. We have not yet substituted for the on-shell value of D and d given in eq. (2.21).

We can now rederive the Bogomol’nyi bound on the energy of the system, and its

saturatation by self-dual equations from the supercharge algebra. Indeed, as it is well

known [21]–[26] that in the supersymmetry context the Bogomol’nyi equations imply that

the total energy of the system is bounded below by the central charge of the theory which is

proportional to the topological charge associated to the solutions of the self-dual equations

(in our case the number of vortex flux units of both sectors).

The Supersymmetry algebra dictates that, in the rest frame

{Qα, Q̄β} = γ0αβE + 1αβT , (4.4)

here E is the total energy of the system and T is the central charge. Squaring and tracing

over this equation it is easy to get,

E ≥ |T | , (4.5)

which is the promised bound. Now, using the explicit form of the supercharges in eqs. (4.2)–

(4.3), we can calculate explicitly E and T Since we will eventually only keep bosonic

terms, we need to impose that the fermions and their canonical conjugate obey usual

Hamiltonian mechanics commutation relations. Because of the presence of the mixing

term, the conjugate momentum for the gauginos is not trivial. Indeed, we find that

δS

δ∂0λ
= (λ̄− ξτ̄)γ0,

δS

δ∂0τ
= (τ̄ − ξλ̄)γ0. (4.6)

We therefore impose that

{

λα(x),
(

λ̄(y)γ0 − ξτ̄(y)γ0
)

β

}

=
{

τα(x),
(

τ̄(y)γ0 − ξλ̄(y)γ0
)

β

}

= 1αβδ
(3)(x− y) , (4.7)

and put fermions to zero after calculating the anti-comutators. We also set the gauge

scalars to zero and impose the standard assumptions for magnetic vortex solutions (the
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gauge choice A0 = C0 = 0 and time-independence of the configuration). The resulting

energy and central charge are,

E =

∫

d2x

(

1

2
FijF

ij +
1

2
GijG

ij − ξF ijGij −D2 − d2 + ξDd+ |DAs|2 + |DCt|2
)

=

∫

d2x

(

e
1

2
FijF

ij +
1

2
GijG

ij − ξF ijGij + V (s, t) + |DAs|2 + |DCt|2
)

, (4.8)

T = iǫij
∫

d2x
(

FijD +Gijd− ξFijd− ξGijD + (DA
i s)(D

A
j s)

∗ + (DC
i t)(D

C
j t)

∗
)

. (4.9)

Inserting auxiliary fields D and d as given in eq. (2.21) we get

T = −
∫

d2x

(

ǫijFij
e

2

(

|s|2− s20
)

+ ǫijGij
g

2

(

|t|2− t20
)

+ iǫij(DA
i s)(D

A
j s)

∗+ iǫij(DC
i t)(D

C
j t)

∗

)

(4.10)

which can be rewritten as

T =

∫

d2x ∂i(π
i
1 + πi2) , (4.11)

with

πi1 = ǫij
(

Aj
e

2
s20 + is∗DA

j s

)

, πi2 = ǫij
(

Cj
g

2
t20 + it∗DC

j t

)

. (4.12)

Using Stoke’s theorem we are left with a contour integral of these quantities over the circle

at infinity. Since covariant derivatives should vanish on this contour, we get

T = es20

∮

Aidx
i + gt20

∮

Cidx
i = s202π|n|+ t202π|k| . (4.13)

Then, using eq. (4.5) we obtain the same bound as in eq. (3.22). We used the more

algorithmic procedure based on the SUSY algebra.

It should be noted that the interaction between vortices contributes no net central

charge (i.e. T does not depend on ξ), only extra energy through the gauge quadratic term

and the extra part of the scalar potential, as seen above. This is natural; T is a topological

quantity. It cannot depend on smoothly-varying parameters.

5 Numerical solutions

In this section we present the vortex solutions to eqs. (3.23)–(3.26) obtained using an

asymptotic shooting method [27]. We use the Euler-Lagrange radial equations (3.42)–(3.45)

since, being second order, there are two integration constants per equation in contrast with

just one in the first order Bogomol’nyi case. This gives more degrees of freedom for the

method to act on, and bases itself on a system that suffers less unstable behaviours as

we move through parameter space, justifying the use of these (a priori more difficult)

equations.

Of course, we finally achieve complete agreement for the solutions of both first and sec-

ond order systems. We plot the solution profiles and its dependence on the free parameters

[ξ, er, µ] defined in eq. (3.6), showing that these parameters can be tuned to have different
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Figure 1. Scalar and magnetic field profiles for ξ = 10−8, er = 0.5, µ = 1.

profiles and widths for the hidden and visible strings. The idea is that this analysis could

be useful to determine the best conditions and experimental framework to study the hidden

sector, specially in connection with hidden dark strings interacting with particles of the

Standard Model. We will keep the kinetic gauge mixing ξ in the region ξ < 10−3 since

larger values are experimentally ruled out. Concerning er, its value controls the vacuum

expectation values of the visible and hidden scalar fields.

We started our analysis by considering the ξ → 0 limit in which, as expected, the

solutions correspond to those of two decoupled Abelian Higgs models, namely the usual

Nielsen-Olesen vortices.

Then, by taking larger values of the mixing parameter we studied the deviation of

vortex solutions (both of the Higgs fields s, t profiles and the magnetic. Below we present

the most relevant features of the resulting solutions.

• The decoupled case. We first considered a small value of the kinetic mixing parameter,

ξ = 10−8, and identical values for the gauge couplings and vector masses in both

sectors, er = µ = 1. As advanced, the two sectors decouple showing each one

Nielsen-Olesen vortex solutions.

Nonetheless, still in the very small mixing parameter regime, apreciable departures

from the decoupled Nielsen-Olesen solutions were found if, for instance, the two gauge

coupling constant are different, er 6= 1. In this case, the rescaled VEVs of the two

Abelian Higgs are different, see eqs. (3.11)–(3.12), therefore showing different profiles.

The fields profile for the case er = 0.5 is shown in figure 1. As can be seen from this

figure, when er decreases (for fixed µ), the expectation value of the hidden Higgs field

grows. Note that in this case the magnetic fields from both sectors remain identical.

We studied larger values er > 1 and the result above still holds (the rescaled potential

minimum of the hidden scalar is smaller). The main feature to be retained from

these results is that even in the very small ξ regime, the Higgs scalars in each sector

– 15 –
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Figure 2. Field profiles for ξ = 10−8 and er = 10−8, µ = 1. The hidden Higgs scalar t is rescaled

by its VEV to fit in the figure.

detect the gauge mixing showing different profiles while the magnetic fields remain

indistinguishable when the gauge field masses are identical, see figure 1.

It is important to note at this point that the actual parameter controlling the strength

of the mixing in the kinetic sector is in fact given by the quotient ξ/er, as can be

seen from equation (3.14). Then, even if in agreement with experimental constraints

one considers very small ξ values, the ratio ξ/er can be made closer, or even bigger

than one by considering the visible gauge coupling constant much bigger than the

hidden sector one, this implying er ≪ 1. Such possibility is shown in figure 2, in

which ξ = 10−8 and er = 10−8. One can see that in that case the visible and hidden

magnetic fields differ. Concerning scalars, the visible Higgs field profile remains

similar to that in figure 1, while the hidden Higgs has been rescaled in the plot

becaused of its much bigger VEV.

Concerning the case in which the masses of the gauge fields are different µ 6= 1 (with

the mixing parameter still very small, χ = 10−8) none of the fields profile is identical

to their hidden counterpart, as can be seen in figure 3 for the case µ = 0.5. Moreover,

each sector exhibits profiles which coincide with the uncoupled (ξ = 0) case. Note

that the choice corresponds to a hidden gauge field mass smaller than the visible one

this implying that the exponential decay of the hidden magnetic field is slower, as

can be seen in the figure. Now, since we are at the Bogomol’nyi point the mass of

the hidden scalar is identical to the hidden gauge field mass, and hence the growth

of the scalar field towards its VEV is slower.

• “Strong” mixing regime. As explained in section 2.2 consistency of asymptotic behav-

iors implies that ξ < 1. We then consider that the two sectors are strongly coupled for

the gauge mixing paramater of the order ξ ∼ 0.5 taking the ratio of gauge couplings

er = 0.5. The profile of the fields is shown in figure 4 for the case ξ ∼ 0.5 so that

ξ/er = 1. One can see that the visible and hidden magnetic field profiles not only

are different but the exhibit a crossover.
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Figure 3. We have considered µ = 0.5, ξ = 10−8 and er = 1.
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Figure 4. We have considered µ = 1, ξ = 0.5 and er = 0.5.

6 Diagonalisation of the theory

6.1 The diagonal action

In his study of “millicharged-particles” [6], Holdom observed that when the gauge fields

are mixed with a FµνG
µν term, one can perform a change of basis leading to an orthogonal

diagonalisation of the kinetic terms. In this section we extend such procedure to the

supersymmetric model extension that we are discussing.

We start from the N = 2 superspace action in eq. (2.11)

SN=2 =

∫

d3xd2θd2θ̄

{

1

4
ΣΣ+

1

4
Φ†e−ieUΦ+

ies20
2
U +

1

4
ΥΥ+

1

4
Ψ†e−igV Ψ+

igt20
2
V − ξ

2
ΣΥ

}

,

(6.1)
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and, as we did in section 2.2 for the scalar potential, we rewrite the supersymmetric La-

grangian for the coupled gauge fields sector as a quadratic form;

LΣΥ =
1

4

(

Σ Υ
)

(

1 −ξ
−ξ 1

)(

Σ

Υ

)

=
1

4

(

Σ Υ
)

M
(

Σ

Υ

)

. (6.2)

The matrixM in the second line of eq. (6.2) can be diagonalised by the following orthogonal

matrix
1√
2

(

1 1

1 −1

)

M 1√
2

(

1 1

1 −1

)

=

(

1− ξ 0

0 1 + ξ

)

. (6.3)

Hence we define new decoupled gauge multiplets,

(

Ũ

Ṽ

)

=
1√
2

(

1 1

1 −1

)(

U

V

)

. (6.4)

Note that this change of basis is its own inverse and it induces a trivial Jacobian in the

putative partition function of the model.

The new action, in terms of these gauge fields becomes,

SN=2 =

∫

d3xd2θd2θ̄

(

1− ξ

4
Σ̃Σ̃ +

1

2
Φ†e

− ie
√

2
(Ũ+Ṽ )

Φ+
ies20
2
√
2
(Ũ + Ṽ )

+
1 + ξ

4
Υ̃Υ̃ +

1

4
Ψ†e

− ig
√

2
(Ũ−Ṽ )

Ψ+
igt20
2
√
2
(Ũ − Ṽ )

)

. (6.5)

If ξ = ±1 one of these eigenvalues would vanish, meaning one of the new gauge fields

decouples. See below eq. (3.18) for an alternative view on the same effect. In order to

canonically normalize the gauge kinetic terms we redefine superfields

Ũ =
1√
1− ξ

Û , Ṽ =
1√
1 + ξ

V̂ , (6.6)

and gauge charges,

e1 =
e

√

2(1− ξ)
, e2 =

e
√

2(1 + ξ)
, g1 =

g
√

2(1− ξ)
, g2 =

−g
√

2(1 + ξ)
,

(6.7)

so that we end up with the following action,

SN=2 =

∫

d3xd2θd2θ̄

(

1

4
Σ̂Σ̂ +

1

4
Φ†e(−ie1Û−ie2V̂ )Φ+

1

2
(ie1s

2
0 + ig1t

2
0)Û

+
1

4
Υ̂Υ̂ +

1

4
Ψ†e(−ig1Û−ig2V̂ )Ψ+

1

2
(ie2s

2
0 + ig2t

2
0)V̂

)

. (6.8)

This diagonal action is a more standard theory than the original one. Indeed, the matter

sector is in a bi-fundamental representation of a U(1) × U(1) gauge group, with no direct
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interaction between the gauge particles themselves. To recapitulate the new field content

we have is,

Âµ =

√

1−ξ
2

(Aµ+Cµ) , M̂ =

√

1−ξ
2

(M+N) , λ̂ =

√

1−ξ
2

(λ+τ) , D̂ =

√

1−ξ
2

(D+d) ,

Ĉµ =

√

1+ξ

2
(Aµ−Cµ) , M̂ =

√

1+ξ

2
(M−N) , τ̂ =

√

1+ξ

2
(λ−τ) , d̂ =

√

1+ξ

2
(D−d) .

(6.9)

With these definitions, the action now reads

S =

∫

d3x

(

− 1

4
F̂µνF̂

µν − 1

2
s†�́s+

1

2
D2 −

(

ie1
2

(

|s|2 − s20
)

+
ig1
2

(

|t|2 − t20
)

)

D̂

)

,

− 1

2
M̂�M̂ − 1

4
M̂2|s|2 + i

2
ψ̄ /́Dψ +

i

2
¯̂
λ/∂λ̂− 1

2
M̂ψ̄ψ − e

2

(

ψ̄λ̂s+ s†
¯̂
λψ
)

,

− 1

4
ĜµνĜ

µν − 1

2
t†�̌t+

1

2
d2 −

(

ie2
2

(

|s|2 − s20
)

+
ig2
2

(

|t|2 − t20
)

)

d̂ ,

− 1

2
N̂�N̂ − 1

4
N̂2|t|2 + i

2
σ̄ /̌Dσ +

i

2
¯̂τ /∂τ̂ − 1

2
N̂ σ̄σ − g

2

(

σ̄τ̂ t+ t† ¯̂τσ
)

, (6.10)

where the covariant derivatives for the matter sector are now,

D́µ = (∂µ − ie1Âµ − ie2Ĉµ) , Ďµ = (∂µ − ig1Âµ − ig2Ĉµ) . (6.11)

6.2 Scalar potentials

Since we have not redefined the scalar multiplets at all, solving for the auxiliary fields and

restoring the old gauge couplings should give back the previously obtained potential. Let

us check this whilst also writing the scalar potential in terms of the new couplings. The

absence of the gauge mixing term means that the new auxiliaryD-terms are not intertwined

and therefore can be eliminated independently;

D̂ =
ie1
2

(

|s|2 − s20
)

+
ig1
2

(

|t|2 − t20
)

(6.12)

d̂ =
ie2
2

(

|s|2 − s20
)

+
ig2
2

(

|t|2 − t20
)

, (6.13)

which, after substitution for the couplings given by eq. (6.7) gives rise to the following

potential,

V [s, t] =

(

e21 + e22
8

(

|s|2 − s20
)2

+
g21 + g22

8

(

|t|2 − t20
)2

+
e1g1 + e2g2

4

(

|s|2 − s20
)(

|t|2 − t20
)

)

=
1

1− ξ2

(

e2

8

(

|s|2 − s20
)2

+
g2

8

(

|t|2 − t20
)2

+
egξ

4

(

|s|2 − s20
)(

|t|2 − t20
)

)

. (6.14)

As expected this expression coincides with the previously obtained scalar potential

eq. (2.25).
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6.3 Supercharges and algebra

The diagonalisation allows us to easily find the Bogomol’nyi bound for the energy from the

simpler supercharge algebra. Indeed, the diagonalized Lagrangian possesses the following

supercharges,

QS =

∫

d2x

(

(

− 1

2
ǫµνρF̂µνγρ+i/∂M̂+iD̂∗

)

γ0λ̂+

(

i
(

/∂−ie1 /̂A−ie2 /̂C
)

s∗− e1
2
M̂s∗− e2

2
N̂s∗

)

γ0ψ

+

(

− 1

2
ǫµνρĜµνγρ+i/∂N̂+id̂∗

)

γ0τ̂ +

(

i
(

/∂+ig1 /̂A+ig2 /̂C
)

t∗− g1
2
Mt∗− g2

2
Nt∗

)

γ0σ

)

,

(6.15)

and

Q̄S =

∫

d2x

(

¯̂
λγ0

(

− 1

2
ǫµνρF̂µνγρ − i/∂M̂− iD̂

)

+ ψ̄γ0
(

− i
(

/∂ − ie1 /̂A− ie2 /̂C
)

s− e1
2
M̂s− e2

2
N̂s

)

¯̂τγ0
(

− 1

2
ǫµνρĜµνγρ − i/∂N̂− id̂

)

+ σ̄γ0
(

(

/∂ − ig1 /̂A− ig2 /̂C
)

t− g1
2
Mt− g2

2
Nt

)

)

.

(6.16)

Note that in this case the conjugate momenta of the fermions are the canonical ones so the

procedure is simpler. Calculating the SUSY algebra and imposing that the fermions and

gauge scalars vanish, we are left with the following energy and central charge,

E =

∫

d2x

{

1

2
F̂ijF̂

ij + |D́s|2 + 1

2
ĜijĜ

ij + |Ďt|2 + V (s, t)

}

. (6.17)

T = −
∫

d2x

(

ǫijF̂
ij

(

e1
2

(

|s|2 − s20
)

+
g1
2

(

|t|2 − t20
)

)

+ iǫij(D́is)(D́js)
∗

+ ǫijĜ
ij

(

e2
2

(

|s|2 − s20
)

+
g2
2

(

|t|2 − t20
)

)

+ iǫij(Ďit)(Ďjt)
∗

)

. (6.18)

As before this central charge can be written as a total derivative,

T =

∫

d2x ∂iV i (6.19)

with

V i = ǫij

(

Âj

(

e1
2
s20 +

g1
2
t20

)

+
i

2
s∗
(

∂j − ie1Âj − ie2Ĉj

)

s

+ Ĉj

(

e2
2
s20 +

g2
2
t20

)

+
i

2
t∗
(

∂j − ig1Âj − ig2Ĉj

)

t

)

. (6.20)

Then, using Stoke’s theorem and imposing that covariant derivatives vanish at infinity in

order to have finite energy, we get for the central charge

T =

∮

dxi
(

(e1s
2
0 + g1t

2
0)Âi + (e2s

2
0 + g2t

2
0)Ĉi

)

= (e1s
2
0 + g1t

2
0)ΦÂ

+ (e2s
2
0 + g2t

2
0)ΦĈ

.

(6.21)
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The energy is thus bounded by a linear combination of the fluxes (proportional to vor-

tex units of flux numbers) of these mixed gauge fields Â, Ĉ. We can restore the dependence

on the original fields,

T =

∮

dxi

(

(

e

2
s20+

g

2
t20

)

(Ai+Ci)+

(

e

2
s20−

g

2
t20

)

(Ai−Ci)

)

= es20ΦA+gt
2
0ΦC , (6.22)

which is precisely what we found earlier — see eqs. (3.22) and (4.13). For completeness,

let us also restore the original fields in the energy,

E =

∫

d2x

(

1

4
(1− ξ)(Fij +Gij)2 +

1

4
(1 + ξ)(Fij −Gij) + V (s, t) + |DA

i s|2 + |DC
j t|2

)

=

∫

d2x

(

1

2
FijF

ij +
1

2
GijG

ij − ξF ijGij + V (s, t) + |DA
i s|2 + |DC

i t|2
)

. (6.23)

Again this is perfectly consistent with the results obtained previously. It is worth noting

that the standard Bogomol’nyi approach to finding these quantities by completing various

positive terms in the action is, in this circumstance, far more obvious, given that there is no

gauge mixing terms. It is indeed, just a question of completing some squares. The positive

definite quadratic form that appeared in our previous theory has been diagonalised away.

6.4 Applications of the diagonal theory: correlation functions

Here, in a somewhat unrelated development, we consider a nice implication for the QFT

aspects of the gauge kinetic mixed theory as read from the diagonalised theory.

The two theories are exactly equivalent, even at the quantum level since the Jacobian

of our transformation is trivial. If we add currents to the partition function, via a term

∫

d3x(JA
µ A

µ + JC
µ C

ν) =

∫

d3x
(

JA
µ JCν

)

(

Aµ

Cν

)

. (6.24)

We retain the shape of this form after diagonalisation as long as we perform the opposite

transformation on the currents;
(

JA
µ

JC
ν

)

=

(√
1− ξ 0

0
√
1 + ξ

)

1√
2

(

1 1

1 −1

)(

J Â
µ

J Ĉ
ν

)

. (6.25)

Thus we can write
δ

δJC
µ

=
1√
2

(

1√
1− ξ

δ

δJ Â
µ

− 1√
1 + ξ

δ

δJ Ĉ
µ

)

, (6.26)

and similarly for the other transformed current. This gives an explicit formula to transform

correlation functions in one theory to those in the other theory, thus, we can calculate every

observable of one theory from observables of the other.

For instance, looking at the mixing terms diagrammatically, allows us to add a 2-point

vertex transforming A into C with amplitude ξ. This is analytically similar to a mass term,

in that an arbitrary amount of this vertex can be added to any gauge propagator, which

then need to be summed over as a geometric series. In practice: for the A−A and C −C
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propagator (with the same ingoing and outgoing particle states), one can add any even

number of this interaction 2-vertex, leading to a factor ξ2n for each of them, summing over

them means that these propagators get modified by a factor of 1/(1 − ξ2). In addition,

the Feynman rules now also possess a A − C propagator with different in and out states,

corresponding to an odd number of inserted vertices, thus it has a factor of ξ/(1 − ξ2).

This allows for extra channels: one can turn a pair of scalars of one sector into the other

scalar pair using this mixed-states propagator.

This is consistent with the results from the diagonalised theory. With these modified

gauge propagators, the ss→ tt tree-level amplitude is proportional to egξ/(1− ξ2), in the

diagonalised theory, summing over both channels we get

eg

2

(

1

1− ξ
− 1

1 + ξ

)

=
egξ

1− ξ2
. (6.27)

From this point of view, neither scalar gains an effective charge under the other gauge field.

Rather, the gauge field oscillates as it propagates and allows for production of particles in

the other sector. Had we performed a non-orthogonal change of basis, such as

Ã = A− ξC , C̃ =
√

1− ξ2C , (6.28)

then s gains (in terms of the new gauge fields) a small hidden sector charge eξ/
√

1− ξ2,

while the charge of t is rescaled to g/
√

1− ξ2 leading to the same ss → tt tree-level

amplitude. This approach, while consistent, artificially breaks the equivalence of the two

sectors. Indeed, the content of both sectors have the same structure, and are made to

communicate by a term that is A↔ C invariant, it is more elegant to find an interpretation

of this term (i.e. a reformulation of the theory) that does not disturb this property.

Let us now summarize our findings and propose some topics for future investigation.

7 Conclusions

In this paper we have been partly motivated by models for the hidden sector of different

mechanisms of SUSY breaking in beyond the Standard Model Physics and also by models

with a Higgs portal and gauge kinetic mixing interaction. Our motivation also came from

recent developments on Dark Matter and topics around that. Indeed, in some scenarios,

the dark-sector is modelled by a lagrangian that communicates it with the Standard Model

via a gauge-kinetic mixing interaction. The problem that occupied us in this work was the

study of dark-strings, namely topological defects of the dark sector, when in interaction

with the visible sector via terms discussed above. Due to different observational constraints,

we considered the situation in which both U(1)’s — the Standard Model and the hidden

one — are spontaneously broken. At large distances this system is well described by two

Abelian Higgs models that interact via a gauge kinetic mixing term and a potential to be

determined.

We searched for topological objects in this model, using a well established procedure;

namely we extended the model of eq. (2.1) to N = 2 SUSY. We then read BPS equations
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and topological charges using the SUSY algebra. We have checked our results with more

traditional methods, finding complete agreement.

In fact, the N = 2 version of the model of [19] determines the interaction potential and

relations between different couplings, so that the model presents stable vortex solutions,

generalising those of Nielsen-Olesen. As mentioned, we found the topological charge that

bounds the Energy of our strings and BPS equations that control the string dynamics.

We have studied these equations numerically, finding the set of parameters that control

the shapes and widths of the hidden and visible strings. The relevant parameters are: µ

controling the quotient of the masses of the (spontaneously broken) gauge fields; er that

controls the VEV of the hidden Higgs field t. Finally, the parameter ξ
er
, accounts for the

strength of the interaction.

We observed that in the ‘decoupled’ case ξ
er

→ 0, for equal masses of the gauge fields

µ = 1 and fixed VEV for the hidden Higgs (er ∼ 1), we are in the expected situation of a

pair of decoupled Abelian Higgs Models. Changing to er 6= 1, we found departures from

the fully decoupled case; the VEV < t > is inversely proportional to er, while the profiles

of the magnetic fields are still similar. If the masses of the gauge fields are taken to be

different (for example µ < 1), the hidden and visible magnetic fields decay differently, the

hidden vortex is more delocalised (for µ < 1 and er = 1). On the other hand, when we

consider a ‘strongly mixed’ situation, ξ
er

∼ 1, the profiles of both strings are different, even

when the gauge fields acquire the same mass. See figures 1–4 for an illustration of these

points.

Finally, we closed our study with a nice alternative way of obtaining these results,

by considering a diagonal basis of gauge fields (that on the other hand, charges both

hidden and visible matter under both the Standard Model and the hidden gauge groups).

Indeed, the gauge kinetic mixing term’s effects is to make the gauge fields oscillate from one

sector to another during propagation, this diagonalisation argument is nothing more than

a propagation eigenbasis for the theory. Of course, we obtained perfect agreement using

different perspectives. It is especially nice that differing formalisms manage to produce

a topological (central) charge that is — reasonably — independent of the parameter ξ

weighting the gauge kinetic mixing term.

Various problems for future study are suggested by the contents of this paper. Given

that the symmetries of the problem reduce it to three space-time dimensions it seems

natural to study the behavior when a Chern-Simons term is present — see [28]–[35] —

for a sample of different aspects of Chern-Simons SUSY actions and vortex solutions.

The study of scattering of visible particles with our topological strings is needed to make

concrete predictions on cross sections, that might be experimentally verified. In this sense

a more robust numerical analysis than the one presented here would be desirable.

It would also be interesting to study the extension of our formalism, in the case in

which the models are non-Abelian (hence applicable when the low Energy description in

this paper breaks down) — see [31] for some work on that direction.
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