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Abstract. We study the effect of intense magnetic fields on the phase diagram of cold, strongly
interacting matter within an extended version of the Nambu-Jona-Lasinio model that includes
flavor mixing effects and vector interactions. Different values of the relevant model parameters
in acceptable ranges are considered. Charge neutrality and beta equilibrium effects, which are
specially relevant to the study of compact stars, are also taken into account. In this case the
behavior of leptons is discussed.

1. Introduction

The influence of intense magnetic fields on the properties of strongly interacting matter has
become an issue of increasing interest in recent years [1]. This is mostly motivated by the
realization that in some relevant physical situations, like high energy non-central heavy ion
collisions [2] and compact stellar objects called magnetars [3], very strong magnetic fields may
be produced. Since in these systems extreme temperatures and/or densities may be found, it
is interesting to investigate which modifications are induced by the presence of strong magnetic
fields on the whole QCD phase diagram. Unfortunately, even in the absence of those fields, the
present knowledge of such phase diagram is only schematic due to the well-known difficulty given
by the so-called sign problem which affects lattice calculations at finite chemical potential [4].
Of course, the presence of strong magnetic fields makes the situation even more complex.
Thus, most of our present knowledge of their effect comes from investigations performed in
the framework of effective models [5]. In this contribution we present some results of a study of
the phase diagram of cold quark matter subject to intense magnetic fields in the framework of
a generalized Nambu-Jona-Lasinio (NJL) model. The NJL-type models are effective relativistic
quark models for non-perturbative QCD, where gluon degrees of freedom are integrated out
and interactions are modelled through point-like interactions. In its simplest version [6] it only
includes scalar and pseudo-scalar interactions that describe chiral symmetry breaking effectively.
As is well known, however, a more detailed description of the low-energy quark dynamics
requires that other channels like flavor-mixing and vector-meson interactions are taken into

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Published under licence by IOP Publishing Ltd 1



XIII International Workshop on Hadron Physics IOP Publishing
Journal of Physics: Conference Series 706 (2016) 052026 doi:10.1088/1742-6596/706/5/052026

account [7]. In fact, some aspects of the effect of those interactions on the magnetized quark
matter have already been investigated [8, 9]. The purpose of this work is to extend those analyzes
by performing a detailed study of the resulting cold matter phase diagrams, including their
dependence on the parameters that regulate the strength of these interactions. Moreover, the
behavior of cold magnetized quark matter under S—equilibrium with leptons will be considered,
condition relevant for the physics of compact stars.

This contribution is organized as follows. In Sec. 2 we provide some details of the model
and its parametrizations as well as the way to deal with an external constant magnetic field. In
Sec. 3 we discuss our results for symmetric quark matter. The situation for neutral matter is
analyzed in Sec. 4. Our conclusions are given in Sec. 5.

2. Formalism

We consider the most general SU(2) Lagrangian density which includes a scalar-pseudoscalar
interaction, vector-axial vector and the t “Hooft determinant interaction [7]. In the presence of
an external magnetic field and chemical potential it reads:
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Here, G; with i = 1,4 and Gp are coupling constants, ¢ = (u, d)T represents a two-flavor quark
field with two flavors, d4 = det [1,5 (1 £7s) M, i = diag (f4y, 1q) the quark chemical potentials,
m, is the (current) mass matrix that we take to be the same for both flavors , 79 = 242, and
Ta, 0 < a < 3 denote the Pauli matrices. The coupling of the quarks to the electromagnetic
field A, is implemented through the covariant derivative D, = 9, — iq.A, where § represents
the quark electric charge matrix ¢ = diag (qy, g4) where q,/2 = —qq = /3. We consider a static
and constant magnetic field in the 3-direction, A, = 6,271 B. In the mean-field approximation
the grand-canonical thermodynamical potential reads
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where 0 gives the contribution from the gas of quasi-particles of each flavor f = u,d and can
be written as the sum of 3 contributions [10]
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where My = m.+ oy and iy = py — wy, with oy and wy being the mean field values of the
scalar and vector meson fields, respectively. A represents a non covariant ultraviolet cutoff and
WO (—1,2;) = d((z,24)/dz|.——1 where ((z,2;) is the Riemann-Hurwitz zeta function. In
addition, sf(v, B) = ,/M}% + 2|q¢|Br while x§ = M;/(2|qf|B). In 9}”5‘1, the sum is over the
max

Landau levels (LLs), represented by v, while a,, = 2 — §,0 is a degeneracy factor and vy is

the largest integer that satisfies v"** < (ﬂfc — Mf2)/(2]qf\B).
The €2,,,¢ contribution reads

(1—cs) (02 +02) —2c50,04 (- 2¢,) (w2 + w3) + ¢y wy wy
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ont =
where we have introduced a convenient parametrization of the coupling constants in terms of
the quantities gs, cs, g, and ¢, given by
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The relevant gap equations are given by
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In our calculations we will consider first the simpler case of symmetric matter where both
quarks carry the same chemical potential u. Afterwards, we will analyze the case of neutral
matter in which leptons are also present and S-equilibrium and charge neutrality are imposed.
In this case the chemical potential for each quark, jy, is a function of x and the lepton chemical
potentials which have to be selfconsistently determined.

We will consider two SU(2) NJL model parametrizations: set 1, with m. = 5.595 MeV,
gsA? = 2212, A = 620.9 MeV, corresponds to that leading to My = 340 MeV; and set 2, with
me = 5.833 MeV, g,A? = 2.44, A = 587.9 MeV, to that leading to My = 400 MeV. Here M is
the vacuum quark effective mass in the absence of external magnetic field.

The presence of the t'Hooft determinant interaction reflects the U4 (1)—anomaly of QCD. Its
strength, and consequently the amount of flavor mixing induced by this term, is controlled by the
parameter cs. An estimate for its value can be obtained from the 1 — 7’ mass splitting within the
3—flavor NJL model [11]. This leads to ¢; ~ 0.2 [12]. In any case, to obtain a full understanding
of the effects of flavor mixing we will vary the value of ¢s in a range going from 0, which
corresponds to a situation in which the two flavors are completely decoupled, to 0.5, being this
the case of maximum flavor mixing described in Ref. [13]. Regarding the vector coupling constant
gu, we recall that one can obtain naturally the vector axial-vector interaction if one starts from a
QCD-inspired color current-current interaction and then performs a Fierz transform into color-
singlet channels, and that in this case the relation between coupling strengths is g, = gs/2 [7].
Yet, the value of g, cannot be accurately determined from experiments nor from lattice QCD
simulations and this is why it has been taken as a free parameter in most works. In the present
work we take 0 < g,/gs < 0.5.

3. Results for symmetric matter

In this section we present the results for the case of symmetric matter, obtained by solving
the set of coupled “gap equations”, Egs. (7), for different values of magnetic field and chemical
potential. We will consider in Sec. 3.1 the effect of flavor mixing on quark behavior in the
absence of vector interactions and turn to the study of the role of those interactions in Sec. 3.2.
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3.1. Effect of the flavor mixing interactions

Neglecting vector interactions implies taking Go = G5 = G4 = 0 in Eq. (2), while G; # 0 and
Gp # 0. Therefore, Egs. (7) will become a set of two coupled equations that must be solved
for the independent variables M, and My. The parameter c; acts as a coupling between both
flavors and we study how the phase transitions are modified as we vary this parameter.

The case ¢; = 0.5 corresponds to ordinary NJL described in detail in Ref [13], where both
flavors have identical behavior. If ¢s < 0.5, then both masses will be independent variables, and
transitions for each flavor might occur simultaneously or not in different regions of the phase
diagrams. It is common to all these cases that chiral symmetry is completely broken for chemical
potentials well below M and that restoration occurs for high enough chemical potentials, usually
accompanied by a large drop in the dressed mass. The inclusion of a constant magnetic field
modifies the quark dispersion relation, introducing LL’s into its spectrum. As a consequence,
chiral symmetry restoration occurs in several steps, each of which is a transition where quark
population appears on previously unoccupied LL’s, giving rise to a potentially complex phase
diagram, whose precise form depends on the parameter set and magnetic field.

We will start by analyzing the phase transitions for the case with no flavor mixing, i.e. ¢; = 0,
previously studied in Ref. [8]. The phase diagrams for both parameter sets can be seen in the
upper two panels of Fig. 1. In a sense, each flavor will have its own independent phase diagram
because the gap equations are decoupled. Here, each line corresponds to a transition where LL
population of a single quark flavor occurs (red lines for down quarks, blue lines for up quarks).
Both flavors will coincide for eB = 0 where SU(2) symmetry is recovered and behave differently
as eB increases, due to their different electric charges. Both diagrams are related through a
scale change eB — 2¢B.

When ¢, becomes finite (second row onwards in Fig. 1), flavors become coupled and a complex
pattern is created, where transitions move closer together in some regions and even merge
together in others, that is, the LL population changes simultaneously for both flavors (these are
represented by black lines). We can see that already for ¢, = 0.03, the transitions occur together
for low magnetic fields, and then separate for B = 0.02 GeV? in set 1 and 0.1 GeV? in set 2.

For a better understanding of the meaning of the transition lines, we present in Fig. 2 the
dressed masses for both flavors for set 2, ¢, = 0.03 and eB = 0.11 GeV?. When the first
discontinuity is encountered at u = 370 MeV, M, jumps to half its value and its lowest LL
(LLL) becomes populated. On the other hand, the down flavor remains in vacuum. Actually, its
mass presents a small discontinuity caused by the weak coupling to the up quark which is not to
be confused with a down transition, that effectively occurs at y = 374 MeV. When both flavors
are in the vacuum phase, M, > My, while in the populated phase it happens the other way
around, which is consistent with the phenomena of catalysis/anticatalysis discussed in Ref. [13].

For ¢; = 0.2, the transitions for both flavors occur together, so the qualitative behavior is
very similar to the full flavor mixing case c¢; = 0.5. In fact, the model tends to full mixing quite
quickly and only for ¢5 < 0.1 are relevant mixture effects (or more precisely, the absence of it)
actually seen. On the other hand, cross over transitions do not have this property and tend
much more slowly to the ¢, = 0.5 behavior.

3.2. Effect of the vector interactions
In this section we analyze the effect of vector interaction terms. Since for ¢ 2 0.1 the phase
diagrams do not present qualitative variations we fix ¢, = 0.2, which is also in the range of
realistic values suggested in Ref. [12]. Although our results correspond to ¢, = 0, we have shown
that only small quantitative differences occur when varying this parameter from 0 to 1.

In Fig. 3 we present a series of phase diagrams obtained for different values of the ratio g, /gs.
For set 1 we observe that as g,/gs increases the two lower and main transitions separate and

several new transitions appear in the low eB region of the diagram. For set 2 at some small
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Figure 1. (Color online) Phase diagrams in the eB — p plane for the case of symmetric matter
with different values of flavor-mixing parameter c¢; and no vector interactions. To simplify the
figure we have introduced a compact notation to indicate the phases. The pair of integers mn
corresponds to the C,,,, phase and the pair mn to the A,,, phase. The case in which one quark
is in a C-type phase and the other in the A-type phase is indicated by putting a bar on top of
the integer associated with the A-type phase.

9v/gs ~ 0.1 the lower transition first splits into two, leaving a 00 phase in between which was
not present before. For larger values of g,/gs the behavior is similar to that of set 1. In fact,
increasing the vector interaction coupling has the same effect as going to a parameter set that
reproduces a lower value of current mass My, described in Ref. [13]. Notice that the phase
diagram for set 2 and g,/gs = 0.3 is in this sense very similar to set 1 and g,/gs = 0. The
well-shaped behavior of the lowest transition is a manifestation of inverse magnetic catalysis
(IMC), effect that is reduced with increasing g,.

4. Results for neutral matter under f—equilibrium

We now turn our attention to stellar matter, fixing as in the previous section ¢, = 0.2. If charge
neutrality is imposed on our system, there will be a fixed relation between the densities of the up
and down quarks, which will be necessarily different unless they are both zero. So, even though
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of magnetic field in the case of symmetric matter with maximum flavor mixing and no vector
interactions, for both parameter sets.
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Figure 3. (Color online) Phase diagrams in the e B— 1 plane for symmetric matter with ¢ = 0.2
and different values of g,/gs. Phases are denoted as explained in Fig. 1.
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Figure 4. (Color online) Phase diagrams in the eB — p plane for neutral matter under -
equilibrium with ¢; = 0.2 and different values of g,/gs. Phases are denoted as explained in
Fig. 1. The pink dotted line represents muon transition from vacuum to LLL.

cs = 0.2 was close enough to the full mixing case according to what was established in previous
sections, charge neutrality will cause the flavors to behave differently among themselves.

The phase diagrams in the eB — p plane for both parameter sets and for increasing values
of g, are plotted in Fig. 4. The chemical potential 1 on the horizontal axis is now the quark
number chemical potential, which is related to flavor chemical potentials through py = pu—qype.
The introduction of charge neutrality has a few effects similar to those of vector interaction,
in the sense that diagrams become similar to the ones corresponding to lower My sets: main
transitions separate for low eB and several transitions appear in the region between them. The
magnetic anticatalysis effect is reduced also: The depth of the anticatalysis well, as defined in
the previous section, is reduced from 35 MeV to 9 MeV in set 1 and from 43 MeV to 22 MeV
in set 2. As expected, the introduction of vector interactions will further enhance these effects,
so that anticatalysis has completely disappeared for g, = 0.5.

The “Van Alphen - de Haas” (VA-dH) transitions acquire relatively independent behaviors
when charge neutrality is introduced. In particular, for intermediate eB (~ 0.1 GeV?) the
transition between k,, = 0 and k,, = 1 is well separated from the down transition. For symmetric
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matter, the VA-dH transitions occurred to a very good level of approximation for a critical
chemical potential p. = \/2kq¢B (being this condition exact for the chiral case), so the relation
between the charges produced one up transition every two down transitions. Although this
relation is still satisfied for each flavor chemical potential, these are now different between
themselves and related through p, — g + e = 0. As a result of this, in Fig. 4 we roughly have
one up transition every four down transitions. With respect to the leptons, it is seen that the
electron LLL becomes populated simultaneously with quarks, while the muon transition presents
a more complicated dependence with the magnetic field. Namely, the muon LLL requires a very
high chemical potential to become populated at low eB, however, the critical u drops suddenly
at intermediate magnetic fields and joins the main quark transition together with electrons.

5. Final Comments

We have investigated how the phase diagram of cold strongly interacting matter is modified in
the presence of intense magnetic fields in the context of NJL-type models which include flavor
mixing and vector interaction. The whole range of possible flavor mixing values was swept
through, going from the situation in which the two flavors are completely decoupled, to the one
in which they are fully mixed. For low mixing values, a complex phase diagram is generated,
but already for ¢s ~ 0.1, phase diagrams display a behavior that is qualitatively very similar to
the full mixing case. Since SU(3) estimates suggest a value of ¢s ~ 0.2, it can be concluded that
the realistic flavor mixing range is similar in behavior to the full mixing case. In what followed,
vector interactions and the conditions of S-equilibrium and charge neutrality were introduced.
The most notable effect observed is that they attenuate the IMC phenomenon, to the point that
it completely disappears when both effects are jointly taken into account. It was also found
that introducing vector interaction causes the two main transitions to separate and additional
phases to appear between these two, effects that are similar to those occurring when changing
to a parameter set that fits to a smaller dressed mass.
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