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Let H = H+ ⊕H− be a fixed orthogonal decomposition of a 
Hilbert space, with both subspaces of infinite dimension, and 
let E+, E− be the projections onto H+ and H−. We study 
the set Pcc of orthogonal projections P in H which essentially 
commute with E+ (or equivalently with E−), i.e.

[P,E+] = PE+ − E+P is compact.

By means of the projection π onto the Calkin algebra, one 
sees that these projections P ∈ Pcc fall into nine classes. 
Four discrete classes, which correspond to π(P ) being 0, 1, 
π(E+) or π(E−), and five essential classes which we describe 
below. The discrete classes are, respectively, the finite rank 
projections, finite co-rank projections, the Sato Grassmannian 
of H+ and the Sato Grassmannian of H−. Thus the connected 
components of each of these classes are parametrized by the 
integers (via de rank, the co-rank or the Fredholm index, 
respectively). The essential classes are shown to be connected.
We are interested in the geometric structure of Pcc, being the 
set of selfadjoint projections of the C∗-algebra Bcc of operators 
in B(H) which essentially commute with E+. In particular, we 
study the problem of existence of minimal geodesics joining 
two given projections in the same component. We show that 
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the Hopf–Rinow Theorem holds in the discrete classes, but 
not in the essential classes. Conditions for the existence and 
uniqueness of geodesics in these latter classes are found.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let H = H+ ⊕H− be a fixed decomposition of a separable Hilbert space, with both 
H+, H− infinite dimensional. Denote by E+ and E− the orthogonal projections onto H+
and H−, respectively. We shall study the unitary group Ucc and the set of projections 
Pcc of the C∗-algebra Bcc = Bcc(H; H+, H−) given by

Bcc =
)
T ∈ B(H) : [T,E+] is compact

*
.

Here [ , ] denotes the commutator. Note that this condition is equivalent to [T, E−]
compact. If we denote by J the symmetry which is the identity in H+ and minus the 
identity in H− (i.e. J = 2E+ − 1 = 1 − 2E−), this condition is equivalent to [T, J ]
compact. If one writes operators in H as two by two matrices in terms of the given 
decomposition, elements in Bcc have compact off-diagonal entries (with this matricial 
characterization, it is straightforward to verify that Bcc is a C∗-algebra). If we denote by

π : B(H) → C(H) = B(H)/K(H)

the homomorphism onto the Calkin algebra, and e+ = π(E+), then

Bcc = π−1!{e+}Í
"
,

where {e+}Í denotes the set of elements in C(H) that commute with e+.
The set Pcc relates to the so called restricted or Sato Grassmannian (see e.g. [13,14], 

or [5,12] for a version using Hilbert–Schmidt operators instead of compact operators). In 
fact, Pcc is disconnected, and several of its components form the restricted Grassmannian 
of H+ (as well as the restricted Grassmannian of H−). Thus this framework enables one 
to regard the restricted Grassmannian as (certain components of) the set of projections 
of a C∗-algebra. Again, by means of the homomorphism π, one sees that Pcc decomposes 
into nine classes. If P ∈ Pcc, then π(P ) is one of the following (written as 2 × 2 matrices 
in terms of e+, e− = 1 − e+):

0, 1,
3

1 0
0 0

4
,

3
0 0
0 1

4
,

3
p+ 0
0 0

4
,

3
p+ 0
0 1

4
,

3
0 0
0 p−

4
,

3
1 0
0 p−

4
and

3
p+ 0
0 p−

4
.
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The first four classes are called here discrete, and denoted by Di (1 ≤ i ≤ 4). The latter 
five classes are called essential, and denoted by Ej (1 ≤ j ≤ 5).

The main results of this paper are the following:

• The classes Ej are connected (Theorem 5.3)
• The Hopf–Rinow Theorem (two projections in the same connected component can 

be joined by a minimal geodesic) holds in the classes Di (Theorems 6.4 and 6.6)
• The Hopf–Rinow Theorem does not hold in the classes Ej (Corollary 6.8)

The overall contents of the paper are the following. In Section 2 we establish basic facts 
on the structure of essentially commuting projections. In Section 3 we describe the dis-
crete classes Di. In particular we show that their connected components are parametrized 
by the integers, by means of the rank, the co-rank, or the Fredholm index, depending 
on the class. In Section 4 we study properties of the action of Ucc on Pcc. In Section 5
we study the structure of the essential classes Ej . In Section 6 we recall basic facts 
on the differential geometry of the set of projections [9], and on the index of pairs of 
projections [1,4], and study the geodesic structure of Pcc.

2. Structure of Pcc

We begin this section with some basic facts on the unitary group Ucc.

Remark 2.1. The group Ucc is not connected. It is known as the restricted unitary group 
in the literature [14]. Elementary computations show that if U ∈ Ucc is written in matrix 
form in terms of the given decomposition of H,

U =
3
u11 u12
u21 u22

4
,

then uii are Fredholm operators in their respective spaces, and ind(u11) = −ind(u22). We 
shall denote by ind(U) = ind(u11). The connected components of Ucc are parametrized 
by this index: two unitaries lie in the same connected component if and only if they have 
the same index. These facts on the group Ucc can be found in [8,7]. A similar argument 
holds for the invertible group of Bcc: its connected components are parametrized by the 
index of the 1, 1 entry.

From the fact that Ucc is the unitary group of a C∗-algebra, it follows Ucc is a Banach 
Lie group. Its Banach Lie algebra is given by

ucc =
)
A ∈ Bcc : A∗ = −A

*
.

The group Ucc acts on Pcc with the usual coadjoint action:

U · P = UPU∗.
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Now we focus on the set of projections Pcc of the Bcc. Since Pcc is the set of projections 
of a C∗-algebra, using the facts proved by Corach, Porta and Recht in [9], it is a C∞

submanifold of Bcc. Moreover, the action of the unitary group induces a homogeneous 
reductive structure on Pcc. For any fixed P0 ∈ Pcc the map

πP0 : Ucc → Pcc, πP0(U) = UP0U
∗

is a C∞ submersion. The range of this map is the orbit of P0, which is not the whole Pcc. 
We shall examine these orbits in the next section. Let us focus here in the structure of 
elements in Pcc. Pick P ∈ Pcc. Written as a matrix in terms of H = H+ ⊕H−, we have

P =
3

x a

a∗ y

4
.

The fact that P is a selfadjoint projection implies that 0 ≤ x, y ≤ 1, ëaë ≤ 1, and the 
relations

x− x2 = aa∗, y − y2 = a∗a and xa + ay = a. (1)

Since a is compact, the first two relations imply that x − x2 and y − y2 are compact 
operators. Therefore the spectra of x and y, which lie in the unit interval, are discrete sets 
which may accumulate at roots of the polynomial t −t2, i.e. 0 or 1. It follows that x and y
can be diagonalized using the eigenspaces of aa∗ and a∗a, respectively, and in particular, 
all spectral values of x and y, with the possible exception of 0 and 1, are eigenvalues of 
finite multiplicity. As we will see in the next lemma, there is also a symmetry between 
these eigenvalues. Given an operator T , we denote by N(T ) and R(T ), the nullspace and 
the range of T , respectively.

Lemma 2.2. If λ Ó= 0, 1 is an eigenvalue of y, then 1 − λ is an eigenvalue of x, and the 
operator a|N(y−λ1H− ) maps N(y− λ1H−) isomorphically onto N(x − (1 − λ)1H+). Thus 
in particular, these eigenvalues have the same multiplicity. Moreover,

aPN(y−λ1H− ) = PN(x−(1−λ)1H+ )a.

Proof. Let ξ ∈ H, ξ Ó= 0, such that yξ = λξ (with λ Ó= 0, 1). Then by the third relation 
in (1) one has

aξ = xaξ + ayξ = xaξ + λaξ, i.e. xaξ = (1 − λ)aξ.

Also note that

N(a) = N
!
a∗a

"
= N

!
y − y2" = N(y) ⊕N(y − 1H−),

and thus aξ Ó= 0 is an eigenvector for x, with eigenvalue 1 −λ, and the map a|N(y−λ1H−)
is injective from N(y − λ1H−) to N(x − (1 − λ)1H+). Therefore
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dim
!
N(y − λ1H−)

"
≤ dim

!
N
!
x− (1 − λ)1H+

""
.

By a symmetric argument, using a∗ (and the relation ya∗ + a∗x = a∗), one obtains 
equality.

Pick now an arbitrary ξ ∈ H−, ξ = ξ1 + ξ2, with ξ1 ∈ N(y − λ1H−) and ξ2 ⊥
N(y − λ1H−). Then

aPN(y−λ1H− )ξ = aξ1.

On the other hand

PN(x−(1−λ)1H+ )aξ1 = aξ1,

by the fact proven above. Let us see that PN(x−(1−λ)1H+)aξ2 = 0, which would prove our 
claim. Since ξ2 ⊥ N(y−λ1H−), ξ2 =

q
l≥2 ηl+η0+η1, where ηl, l ≥ 2, are eigenvectors of 

y corresponding to eigenvalues λl different from 0, 1 and λ, η0 ∈ N(y), η1 ∈ N(y− 1H−)
(where these two latter may be trivial). Note then that η0, η1 ∈ N(a), and thus

aξ2 =
Ø
l≥2

aηl,

where the (non-nil) vectors aηl are eigenvectors of x corresponding to eigenvalues 1 −λl, 
different from 0, 1 and 1 − λ. Thus PN(x−(1−λ)1H+ )aξ2 = 0. ✷
Remark 2.3. One obtains nine types of projections in Pcc, by means of the homomorphism 
onto the Calkin algebra π : B(H) → C(H) = B(H)/K(H). Denote by e+ = π(E+) and 
e− = π(E−). Note that since both H+ and H− are infinite dimensional, these projections 
are non-trivial. If P ∈ Pcc, then p = π(P ) is one of the following projections in the Calkin 
algebra (written as 2 × 2 matrices in terms of e+, e−):

0, 1,
3

1 0
0 0

4
,

3
0 0
0 1

4
,

3
p+ 0
0 0

4
,

3
p+ 0
0 1

4
,

3
0 0
0 p−

4
,

3
1 0
0 p−

4
and

3
p+ 0
0 p−

4
,

where p+ and p− are proper projections in C(H+) and C(H−). It is known that proper 
projections are unitarily equivalent in the Calkin algebra, even more, that they are 
homotopic. Thus these nine types are nine different classes in the set of projections 
of C(H), modulo the action of the unitaries in C(H) that commute with e+ (and e−), 
i.e. modulo diagonal unitaries of C(H).

In particular, this fact implies that these different types cannot be unitarily equivalent 
in Bcc. Projections of the first four types will be called discrete, and their classes referred 
as (respectively) Di, i = 1, 2, 3, 4. Projections of the latter five classes will be called 
essential, and their classes Ej , j = 1, 2, 3, 4, 5.
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These classes can be also characterized by means of the spectra of x and y. For 
instance, projections in E1 satisfy that the spectrum of x (and thus also the spectrum 
of y) is finite, and that 1 has finite multiplicity (possibly zero). We shall not pursue this 
description here, though the spectral properties of the different classes will be discussed 
later.

3. Discrete projections

In this section we give a characterization of the connected components of the discrete 
classes.

Proposition 3.1. Projections in D1 have finite rank. The connected components of D1 are 
parametrized by the rank: two projections of finite rank lie in the same component if and 
only if they have the same rank.

Proof. Recall that P ∈ D1 if π(P ) = 0, then P is compact, and therefore of finite rank. 
The assertion on the components is well known. ✷

Next we examine discrete projections of the second type:

Proposition 3.2. Projections in D2 have finite co-rank. The connected components of D2
are parametrized by the co-rank.

Proof. If P ∈ D2, then π(P ) = 1. It follows that P is a Fredholm operator. Thus it has 
finite dimensional nullspace, i.e. finite co-rank. ✷

Note that P ∈ Pcc if and only if P⊥ = 1 −P ∈ Pcc. Taking the orthogonal complement 
gives a diffeomorphism between D1 and D2.

Projections of the third type belong to the restricted Grassmannian. Let us recall its 
definition [14]:

A projection P belongs to the restricted Grassmannian Pres(H+) with respect to the 
decomposition H = H+ ⊕H−, or more precisely, with respect to subspace H+ (which is 
the name that we shall adopt here, since the roles of H+ and H− are not interchangeable) 
if and only if
1.

E+P |R(P ) : R(P ) → H+ ∈ B
!
R(P ),H+

"

is a Fredholm operator in Bp(R(P ), H+), and
2.

E−P |R(P ) : R(P ) → H− ∈ B
!
R(P ),H−

"

is compact.
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The index of the first operator characterizes the connected components of Pres(H+). The 
following result is elementary:

Lemma 3.3. Let P ∈ P with matrix (in terms of H = H+ ⊕H−)

P =
3

x a

a∗ y

4
.

Then P ∈ Pres(H+) if and only if x is Fredholm in B(H+), and y and a are compact.

Proof. Suppose first that P ∈ Pres(H+). Then E+P ∈ B(R(P ), H+) is Fredholm, and 
thus

E+P (E+P )∗|H+ = E+PE+|H+ = x

is Fredholm in H+. Also E−P ∈ B(R(P ), H−) is compact, and thus

E−P (E−P )∗|H− = E−PE−|H− = y

is compact in H−. The fact that P is a projection, implies the relation y−y2 = a∗a, and 
thus a is compact.

Conversely, if a and y are compact, then E−P ∈ B(R(P ), H−) is compact.
Since E+P (E+P )∗|H+ = x is Fredholm, it follows that E+P in B(R(P ), H+) has 

closed range (equal to the range of x) with finite codimension. Let us prove that its 
nullspace is finite dimensional. Let ξ = ξ+ + ξ− = Pξ such that E+ξ = 0 (ξ+ ∈ H+, 
ξ− ∈ H−). These imply

0 = xξ+ + aξ− and ξ− = yξ−,

i.e. ξ− lies in the 1-eigenspace of the compact operator y. Thus ξ− lies in a finite dimen-
sional space. It follows that N(E+P |R(P )) is finite dimensional. ✷

From this result it is apparent that:

Proposition 3.4. The set D3 of discrete projections of the third type coincides the restricted 
Grassmannian Pres(H+). The connected components are parametrized (in the integers) 
by the index of the operator E+P |R(P ) ∈ B(R(P ), H+).

With a similar argument, or taking orthogonal complements (⊥ maps D3 onto D4), 
one proves:

Proposition 3.5. The set D4 of discrete projections of the fourth type coincides the re-
stricted Grassmannian Pres(H−). The connected components are parametrized by the 
index of the operator E−P |R(P ) ∈ B(R(P ), H−).
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In order to study the classes of essential projections, it will be useful to establish first 
certain facts concerning the action of Ucc on Pcc.

4. Unitary action

Apparently, projections of the nine different types cannot be unitary equivalent (with 
a unitary in Ucc). Projections in D3 and D4 (i.e. in the restricted Grassmannian of H+
and H−) have infinite rank and corank, therefore they are unitarily equivalent in B(H), 
but not with a unitary in Ucc: Ucc (or Ures) acts in the restricted Grassmannian [12].

Also it is apparent that, if P has finite rank, the unitary orbit

)
UPU∗ : U ∈ Ucc

*
=

)
Q ∈ Pcc : rank(Q) = rank(P )

*
,

which is also the full unitary orbit of P (with unitaries in B(H)). Indeed, it is easy to 
verify that two projection with equal (finite) rank are conjugate with a unitary which is 
a finite rank perturbation of the identity (thus in Ucc).

An analogous result follows in the case when P has finite corank, or arguing by means 
of the symmetry P Ô→ P⊥.

In [14] it was remarked that the action of the invertible group of Bcc is transitive in 
the restricted Grassmannian of H+. The action is given by G · L = G(L), if L belongs 
to the restricted Grassmannian and G is invertible in Bcc. Let us prove that the unitary 
coadjoint actions on projections (of the third and fourth type) is also transitive. To this 
effect, we need the following lemmas (the first result is well known [9]):

Lemma 4.1. Let P and Q be orthogonal projections such that there exists an invertible 
element G in Bcc such that GPG−1 = Q. Then there exists a unitary element U ∈ Ucc

such that UPU∗ = Q.

Proof. GP = QG implies that PG∗ = G∗Q, so that G∗GP = PG∗G, i.e. G∗G commutes 
with P . Then |G| = (G∗G)1/2 also commutes with P . Let G = U |G| be the polar 
decomposition of G. Then

UPU∗ = UPU−1 = G|G|−1P |G|G−1 = GPG−1 = Q. ✷
Lemma 4.2. Let L be a subspace of H such that PL ∈ Pcc, and let G be invertible in Bcc. 
Then there exists an invertible operator T in Bcc such that

TPLT
−1 = PG(L).

Proof. Note that the idempotents PG(L) and Q = GPLG
−1 have the same range, 

namely G(L). Put L0 = G(L). Consider

T0 = QPL0 + (1 −Q)(1 − PL0) = Q + (1 −Q)(1 − PL0).
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First note that T0PL0 = QPL0 = QT0. Also T0 is invertible. Indeed, T0|L0 = T0|R(Q) =
1L0 , and T0|N(Q) = (1 − PL0)|N(Q). Since N(Q) is a supplement for N(1 − PL0) =
L0 = R(Q), this latter operator is an isomorphism between N(Q) and R(1 −PL0) = L⊥

0 . 
Finally, note that T0 belongs to Bcc. This is clear since Q, PL0 ∈ Bcc. Thus T0PG(L)T

−1
0 =

GPLG
−1. ✷

Let us say that two idempotents P and Q are similar in Bcc if there exists an invertible 
operator G in Bcc such that GPG−1 = Q. This is clearly an equivalence relation.

Proposition 4.3. Let L be a subspace of H such that PL ∈ Pcc, and let G be invertible 
in Bcc. Then there exists a unitary U ∈ Ucc such that

UPLU
∗ = PG(L).

Proof. By Lemma 4.2, PL and PG(L) are similar in Bcc. By Lemma 4.1, this implies that 
they are unitary equivalent, with a unitary in Ucc. ✷

If we specialize to projections in D3 and D4, we have the following:

Corollary 4.4. The action of Ucc on D3 (the restricted Grassmannian of H+) is transitive. 
The same statement holds for D4 (the restricted Grassmannian of H−).

Proof. In [12] it was proved that the action G ·L = G(L) (G invertible in Bcc) is transitive
in the restricted Grassmannian of H+: given L1 and L2 such that PLi

are projections 
in D3, then there exists an invertible operator G in Bcc such that PL2 = PG(L1). By the 
above proposition, there exists a unitary U ∈ Ucc such that PL2 = PG(L1) = UPL1U

∗. 
The same argument works in D4. ✷

Note that U in the proof above satisfies U(L1) = L2. An easy consequence of the 
transitivity of the unitary action is the following fact:

Remark 4.5. Two projections P, Q in the same component of the restricted Grassmannian 
verify that the difference P−Q is compact. Indeed, it is known in the zero index connected 
component ([6,5]): the unitary Fredholm group acts transitively on this component, 
thus Q = UPU∗ with U = 1 + K, K compact. Then P − Q = P − (1 + K)P (1 +
K∗) = −KP − PK∗ −KPK∗ is compact. In any other component, since the action is 
transitive, P = WE+W

∗ for some W ∈ Ucc. Thus W ∗QW lies in the same component 
as W ∗PW = E+. It follows that P −Q = W (E+ −W ∗QW )W ∗ is compact.

5. Essential projections

Since the unitary group Ucc acts on Pcc, and leaves invariant the discrete classes, it 
leaves invariant also the set of essential projections. It will be useful to describe the effect 
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of the two fundamental symmetries of Pcc in the class of essential projections. The first 
symmetry is ⊥: Pcc → Pcc, ⊥ (P ) = 1 −P . Note that this symmetry leaves Pcc invariant. 
The second symmetry depends on the choice of orthonormal bases for H+ and H−. Or 
equivalently, using a model H = L × L, let

J =
3

0 1L
1L 0

4
.

Apparently, J maps H+ = L × 0 onto H− = 0 × L (and vice versa). Consider the inner 
automorphism

AdJ : Bcc → Bcc, AdJ(X) = JXJ.

It is clear that AdJ maps Bcc onto itself and that AdJ ◦AdJ = idBcc
. Then

• ⊥ maps E1 onto E2, and E3 onto E4.
• AdJ maps E1 onto E3 and E2 onto E4.
• both symmetries leave E5 fixed.

Consider P ∈ Pcc (not necessarily an essential projection). Without loss of generality 
we may suppose H = L × L, with H+ = L × 0 and H− = 0 × L. By the result in 
Lemma 2.2, writing as before

P =
3

x a

a∗ y

4
,

we know that the spectra of x and y are related (and can be described) in the following 
fashion:

• The spectrum of 0 ≤ x ≤ 1 (as an operator in L) consists of two strictly positive 
(disjoint, eventually finite) sequences αn, βm, such that 1

2 > αn → 0, 1
2 ≤ βm < 1

and βm → 1, plus 0 and 1, which may or may not be eigenvalues.
• The spectrum of y consists of the sequences 1 − αn, 1 − βm, plus 0 and 1.
• The multiplicity of αn (resp. βm) in x equals the multiplicity of 1 −αn (resp. 1 −βn) 

in y. These multiplicities are finite.

With these facts, and using the relations (1), we can describe the entries x, y and a
of P ∈ Pcc:

x =
Ø
n

αnPn +
Ø
m

βmQm + Ex,

y =
Ø

(1 − αn)P Í
n +

Ø
(1 − βm)QÍ

m + Ey,

n m
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and

a =
Ø
n

λnξn ⊗ ξÍn +
Ø
m

μmηm ⊗ ηÍm,

with rank(Pn) = rank(P Í
n), rank(Qm) = rank(QÍ

m), λn =
ð
αn − α2

n and μn =ð
βm − β2

m. Here Ex, Ey denote the spectral projections corresponding to the spectral 
value 1 (which may be trivial or have rank of any dimension) of x and y, respectively. 
As it is usual, the rank one operators ξ ⊗ η are defined by é·, ηêξ. The orthonormal sets

{ξk : k ≥ 1},
)
ξÍk : k ≥ 1

*
, {ηl : l ≥ 1} and

)
ηÍl : l ≥ 1

*

span, respectively, the subspaces
n
n≥1

R(Pn),
n
n≥1

R
!
P Í
n

"
,

n
m≥1

R(Qm) and
n
m≥1

R
!
QÍ

m

"
,

and are eigenvectors of x and y:

xξk = αn(k)ξk, xηl = βm(l)ηl, yξÍk = (1 − αn(k))ξÍk, yηÍl = (1 − βm(l))ηÍl.

Denote by Nx = PN(x) and Ny = PN(y) (which are also unconditioned). Consider the 
following projection (related to P above):

Pd =
3q

m Qm + Ex 0
0

q
n P

Í
n + Ey

4
.

Consider also the operator B ∈ Bcc,

B = P + Pd − 1.

Lemma 5.1. B is invertible in Bcc, and has zero index.

Proof. By direct computation, writing the identity operator as

3q
n Pn +

q
m Qm + Ex + Nx 0

0
q

n P
Í
n +

q
m QÍ

m + Ey + Ny

4
,

one obtains that B is
3q

n(αn − 1)Pn +
q

m βmQm + Ex −Nx a

a∗
q

n(1 − αn)P Í
n +

q
m(−βm)QÍ

m + Ey −Ny

4
.

Note that the diagonal entries are invertible operators, whereas the co-diagonal entries 
are compact. It follows that B is of the form invertible plus compact, and thus it is a 



E. Andruchow et al. / Journal of Functional Analysis 268 (2015) 336–362 347
Fredholm operator. In particular, it has closed range. Let us prove that N(B) = {0}. 
Since B is selfadjoint, this would imply that B is invertible (apparently, it belongs to Bcc). 
Note that since B = P − (1 − Pd) is a difference of orthogonal projections, then

N(B) =
!
N(P ) ∩N(1 − Pd)

"
⊕

!
R(P ) ∩R(1 − Pd)

"
=

!
N(P ) ∩R(Pd)

"
⊕
!
R(P ) ∩N(Pd)

"
.

Let us first see that N(P ) ∩R(Pd) = {0}. If (ξ, η) ∈ N(P ) ∩R(Pd),

Ø
m

Qmξ + Exξ = ξ,
Ø
n

P Í
nη + Eyη = η.

These imply that Pnξ = 0 for all n, Nxξ = 0, QÍ
mη = 0 for all m, and Nyη = 0.

Also one has
Ø
n

αnPnξ +
Ø
m

βmQmξ + Exξ + aη = 0. (2)

Then applying Qm0 , one obtains

βm0Qm0ξ + Qm0aη = 0.

Note that

Qm0aη =
Ø
k

μkQm0ηk ⊗ ηÍk(η) =
Ø
k

μk

+
η, ηÍk

,
Qm0ηk.

Since ηÍk ∈ R(QÍ
m(k)) for some m(k), this sum equals

Ø
k

μk

+
η,QÍ

m(k)η
Í
k

,
Qm0ηk =

Ø
k

μk

+
QÍ

m(k)η, η
Í
k

,
Qm0ηk = 0,

because QÍ
mη = 0 for all m. Thus

βm0Qm0ξ = 0,

which implies that Qmξ = 0 for all m (βm > 0). Similarly, P Í
nη = 0. Note then that the 

fact that (ξ, η) ∈ R(Pd) now implies

Exξ = ξ, Eyη = η.

On the other hand, Eq. (2) above now means

Exξ + aη = 0,
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since these operators have orthogonal ranges, Exξ = 0. Using the relation analogous 
to (2), also Eyη = 0. It follows that N(P ) ∩R(Pd) = {0}. One proves that R(P ) ∩N(Pd) =
{0} in a similar fashion.

Finally, the 1, 1 entry of B above is invertible, therefore B has zero index. ✷
Lemma 5.2. Let F, G be two essential projections which are diagonal (with respect to 
H = H+⊕H−). Then they are homotopic if and only if they belong to the same class Ei. 
In that case, they are unitarily equivalent with a unitary in Ucc of index zero.

Proof. If F and G are homotopic, they clearly belong to the same class Ei. Let us first 
suppose that F, G ∈ E1. The projections F and G are of the form

F =
3
P+ 0
0 F−

4
, G =

3
P+ 0
0 G−

4
,

where P+ is a projection with infinite rank and co-rank, and F−, G− have finite rank. 
It suffices to show that any of these two is homotopic (and unitarily equivalent with a 
unitary in Ucc of index zero) to a projection of the form

E =
3
P+ 0
0 0

4
.

Let {en : 1 ≤ n < ∞} be an orthonormal basis for R(P+), {eÍl : 1 ≤ l < ∞} an 
orthonormal basis for H+ ¡R(P+) and {fk : 1 ≤ k < ∞} an orthonormal basis for H−, 
such that f1, . . . , fM generate R(F−) (M < ∞). Consider the unitary operator U given 
by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

U(en) = fn for 1 ≤ n ≤ M

U(en) = en−M for n ≥ M + 1
U(eÍl) = eÍl+M for 1 ≤ l < ∞
U(fn) = eÍn for 1 ≤ n ≤ M

U(fn) = fn for n ≥ M + 1.

Clearly U(R(E)) = R(F ) and U(R(E)⊥) = R(F )⊥, so that UEU∗ = F . Also it is 
clear that E+UE− = 0 and that E−UE+ is a partial isometry with range generated by 
{f1, . . . , fM}. Thus U ∈ Ucc. Moreover, it is not difficult to see that ind(U) = 0. This 
proves our claim for that case when F, G ∈ E1. Using the symmetry ⊥, the result holds 
for the class E2. Using then the symmetry AdJ in these two classes, the result holds also 
for the classes E3 and E4.

To finish the proof, note that any pair of diagonal projections in E5 is unitarily 
equivalent with a unitary in Ucc of index zero. Indeed, pick F, G two such projections,

F =
3
F+ 0

4
, G =

3
G+ 0

4

0 F− 0 G−
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with F±, G± of infinite rank and co-rank. Apparently, there exist unitary operators V+
and V− in H+ and H−, respectively, such that

V+F+V
∗
+ = G+, V−F−V

∗
− = G−.

Then V = V+ ⊕ V− lies in Ucc of index zero, and implements the equivalence between F
and G. ✷

This fact implies that the classes Ei are connected:

Theorem 5.3. The sets Ei (1 ≤ i ≤ 5) are connected. The action of (Ucc)0, the component 
of the identity in Ucc, is transitive in each Ei.

Proof. Consider the invertible operator B = P + Pd − 1 of Lemma 5.1. Clearly,

BPd = PPd = PB.

Thus P and Pd are similar in Bcc. Thus by Lemma 4.1 they are unitary equivalent 
in Bcc. Moreover, as in the proof of Lemma 4.1, a unitary operator U implementing this 
equivalence is the unitary part of S in its polar decomposition:

U = B
!
B2"−1/2 = sgn(B),

which is in fact a symmetry (sgn is the sign function). Since B lies in the connected 
component of the identity in the invertible group of Bcc (it has zero index), there exists 
a continuous path B(t) of invertible elements in Bcc such that B(0) = 1 and B(1) = B. 
Then

U(t) = B(t)
!
B∗(t)B(t)

"−1/2

is a continuous path in Ucc, joining 1 and U . Thus, we obtain that U ∈ (Ucc)0 and 
Pd = U∗PU . The same argument can be carried out to find a unitary V ∈ (Ucc)0 such 
that Qd = V ∗QV , where Q is another projection in the same class of P and Qd has 
the obvious meaning. According to Lemma 5.2 the diagonal projections Pd and Qd are 
unitarily equivalent with a unitary in (Ucc)0. Hence P and Q are also unitarily equivalent 
with a unitary in (Ucc)0. ✷
6. Geodesics

In [9] a natural reductive structure was introduced to the homogeneous space of 
selfadjoint projections P(A) of an abstract C∗-algebra A. In particular, geodesics were 
characterized. In [11] it was proved that these geodesics have minimal length, if the 
manifold of projections is endowed with the Finsler metric obtained by considering the 
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usual norm of the algebra. For the special case of A = B(H), more recently [3] (see 
also [2]), necessary and sufficient conditions were given for the existence of a geodesic 
(which additionally has minimal length for the Finsler metric considered) joining two 
given projections. Let us summarize this information in the following remark.

Remark 6.1.

1. P(A) is a complemented submanifold of A. Its tangent space (TP(A))P at P is given 
by

!
TP(A)

"
P

=
)
Y = iXP − iPX : X ∈ A, X∗ = X

*
,

which consists of selfadjoint operators Y which are co-diagonal with respect to P
(i.e. PY P = (1 − P )Y (1 − P ) = 0). Denote by Ah the space of selfadjoint elements 
of A. A natural projection EP : Ah → (TP(A))P is given by

EP (X) = co-diagonal part of X = PX(1 − P ) + (1 − P )XP.

This map induces a linear connection in P(A): if X(t) is a tangent field along a curve 
γ(t) ∈ P,

DX

dt
= Eγ(X).

2. For any P ∈ P(A), the map

πP : U(A) → P, πP (U) = UPU∗,

(U(A) = unitary group of A) whose range is the unitary orbit of P in P(A), is a 
C∞ submersion. In particular, it has C∞ local cross sections.

3. If P0, P1 ∈ P(A) with ëP0−P1ë < 1, there exists a unique selfadjoint element Z ∈ A, 
with ëZë < π/2, which is co-diagonal with respect to P0, such that

P1 = eiZP0e
−iZ .

The curve δ(t) = eitZP0e
−itZ is the unique geodesic of P(A) joining P0 and P1 (up 

to reparametrization).
4. If one defines a Finsler metric in P(A), by endowing each tangent space with the 

usual norm in A, then the above geodesic has minimal length, among all rectifiable 
curves in P(A) joining the same endpoints. We point that this Finsler metric is 
non-smooth, nor regular.

5. In the special case A = B(H), if ëP1 −P2ë = 1, there exists a geodesic (equivalently, 
a minimal geodesic) if and only if
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dim
!
R(P1) ∩N(P2)

"
= dim

!
R(P2) ∩N(P1)

"
.

If this dimension is zero, the geodesic is unique (note that there may exist a unique 
geodesic even if ëP1 −P2ë = 1). If it is non-zero, there are infinitely many geodesics. 
Below we describe with more precision how these occur.

Let us recall the notion of Fredholm pairs of projections [4,1]:
Let P , Q be projections. The pair (P, Q) is a Fredholm pair if

QP |R(P ) : R(P ) → R(Q)

is a Fredholm operator. The index i(P, Q) is defined as the index of this operator. The 
index coincides with the integer

i(P,Q) = dim
!
R(P ) ∩N(Q)

"
− dim

!
R(Q) ∩N(P )

"
.

In other words, the index of the pair can be interpreted as the obstruction for the 
existence of a geodesic joining the projections of the pair.

Note that if P lies in the restricted Grassmannian of H+, (P, E+) is a Fredholm pair, 
with i(P, E+) equal to the index of P .

Let us transcribe from [4] and [1] other properties of this index, which will be useful.

Remark 6.2. Let (P, Q) be a Fredholm pair.

1. (Q, P ) is also a Fredholm pair, with

i(Q,P ) = −i(P,Q).

2. If U is a unitary operator, (UPU∗, UQU∗) is also a Fredholm pair, and

i
!
UPU∗, UQU∗" = i(P,Q).

3. If (Q, R) is another Fredhlom pair, and either Q − R or P − Q is compact, then 
(P, R) is a Fredholm pair and

i(P,R) = i(P,Q) + i(Q,R).

4. If P, Q are such that P − Q is of trace class, then the index of the Fredholm pair 
(P, Q) equals

i(P,Q) = Tr(P −Q),

where Tr is the usual trace.
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Let us consider now our main problem in this section, namely the existence of (min-
imal) geodesics of Pcc joining given projections. Clearly the projections must lie in the 
same component, so we proceed this analysis considering the different types of projections 
in Pcc.

Remark 6.3. The symmetries ⊥ and AdJ are isometries for the Finsler structure and 
preserve geodesics. AdJ is the restriction of an (inner) automorphism, so it is clearly 
isometric, and preserves algebraic data: Z is P co-diagonal if and only if AdJ(Z) is 
AdJ(P ) co-diagonal, etc.

⊥: Pcc → Pcc, ⊥ (P ) = P⊥ = 1 − P

is an isometry, and preserves geodesics. Indeed, pick a smooth curve P (t) of projections 
with P (0) = P and Ṗ (0) = X. Then d

dtP
⊥(t)|t=0 = −X, thus the differential of ⊥ at P

is

(d ⊥)P (X) = −X,

which is isometric. A geodesic δ(t) = eitZPeitZ (Z is selfadjoint and P -codiagonal) 
is transformed to δ⊥(t) = 1 − eitZPeitZ = eitZP⊥eitZ , which is a geodesic because 
P -codiagonal is the same as P⊥-codiagonal.

Theorem 6.4. Let P1, P2 ∈ D1 or D2, in the same connected component (i.e. with the 
same rank if they are of the first type, or the same corank if they are of the second 
type). Then there exists a minimal geodesic joining P1 and P2. It is unique if and only 
R(P1) ∩N(P2) = R(P2) ∩N(P1) = {0}.

Proof. Consider first the case when rank(P1) = rank(P2) = n < ∞. Let L be the (finite 
dimensional) subspace generated by R(P1) and R(P2). Clearly L reduces both P1 and P2, 
and both projections act trivially in L⊥. Also it is clear that Tr(Pi|L) = Tr(Pi) = n, 
i = 1, 2. So that by the above remarks, there exists a P1|L-codiagonal selfadjoint operator 
Z Í acting in L, with ëZ Íë ≤ π/2 such that

eiZ
Í
P1|Le−iZÍ

= P2|L.

Consider Z ∈ B(H), Z = Z Í⊕ 0 in L ⊕L⊥. Z is selfadjoint, has finite rank (is compact), 
satisfies ëZë = ëZ Íë ≤ π/2 and

eiZP1e
−iZ = P2,

and is P1-codiagonal, which means that P1 and P2 are joined by a minimal geodesic 
in Pcc.
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If P1 and P2 have finite (and equal) corank, by what was proved above, there ex-
ists a compact selfadjoint operator Z as above (which is P⊥

1 -codiagonal), such that 
eiZP⊥

1 e−iZ = P⊥
2 . P⊥

1 -codiagonal is the same as P1-codiagonal, and this equality triv-
ially implies eiZP1e

−iZ = P2. ✷
In order to study the next types of projections, the following result will we useful.

Proposition 6.5. Let P1, P2 ∈ Pcc such that P1 − P2 is compact and i(P1, P2) = 0. Then 
there exists a minimal geodesic of Pcc joining them.

Proof. Also in this case we proceed by decomposing H in two orthogonal subspaces 
reducing P1 and P2. Denote by A = P1 − P2. Elementary computations (see [3] for 
instance) show that

H1 = N
!
A2 − 1

"
= N(A− 1) ⊕N(A + 1) =

!
R(P1) ∩N(P2)

"
⊕

!
R(P2) ∩N(P1)

"
.

Put H0 = H⊥
1 . Clearly these subspaces reduce P1 and P2. Since A is compact, H1 is 

finite dimensional.
Also i(P1, P2) = 0, and thus

dim
!
R(P1) ∩N(P2)

"
= dim

!
R(P2) ∩N(P1)

"
.

This implies the existence of geodesics of P joining P1 and P2. They can be constructed 
explicitly. Pick any isometric isomorphism (between finite dimensional spaces)

V : R(P1) ∩N(P2) → R(P2) ∩N(P1).

Put U Í : H1 → H1

U Í(ξ, η) =
!
V ∗η,−V ξ

"
, (ξ, η) ∈

!
R(P1) ∩N(P2)

"
⊕
!
R(P2) ∩N(P1)

"
= H1.

Apparently

U ÍP1|H1U
Í∗ = P2|H1 .

Moreover, putting Z Í = −iπ2U
Í, one sees that Z Í is selfadjoint, P1-codiagonal, ëZ Íë = π/2

and satisfies

eiZ
Í
= U Í.

That is, the geodesic δÍ(t) = eitZ
Í
PH1e

−itZÍ joins P1|H1 with P2|H1 (inside H1).
In H0 = (N(A −1) ⊕N(A +1))⊥, since A is a compact contraction (and we are erasing 

the eigenspaces 1 and −1), one has that
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ëP1|H0 − P2|H0ë = ëA|H0ë < 1.

By the above remarks, there exists a unique Z0 = Z∗
0 , which is P1|H0-codiagonal, ëZ0ë <

π/2, and

eiZ0P1|H0e
−iZ0 = P2|H0 .

Let us prove that Z0 is compact in B(H0). That Z0 is P1|H0-codiagonal, implies that it 
anticommutes with the symmetry (selfadjoint unitary) Ô1 = 2P1|H0 − 1H0 . Denote by 
Ô2 = 2P2|H0 − 1H0 the other symmetry. Thus the equation above implies

Ô2 = eiZ0(2P1|H0 − 1)e−iZ0 = eiZ0Ô1e
−iZ0 = e2iZ0Ô1.

Therefore e2iZ0 = Ô2Ô1. Note that

ëÔ2Ô1 − 1ë = ëÔ2 − Ô1ë = 2ëP1|H0 − P2|H0ë < 2,

and that

Ô2Ô1 − 1 = Ô2(Ô1 − Ô2) = 2Ô2(P1|H0 − P2|H0) = 2Ô2
!
(P1 − P2)|H0

"

is a compact operator. It is a known fact (which can be proved using elementary spectral 
theory), that the exponential map X Ô→ eiX is a diffeomorphism between

)
X ∈ B(H0) : X compact, X∗ = X, ëXë < π

*

and

)
U ∈ U(H0) : U − 1 is compact, and ëU − 1ë < 2

*
.

Note that ë2Z0ë < π. It follows that Z0 is compact.
Therefore, the operator Z = Z0 ⊕Z1 acting in H0 ⊕H1 = H, is selfadjoint, compact, 

P1-codiagonal, satisfies ëZë ≤ π/2, and

eiZP1e
−iZ = P2. ✷

We analyze now the case of the restricted Grassmannians.

Theorem 6.6. Let P1, P2 ∈ D3 or D4, in the same connected component (i.e. in the 
restricted Grassmannian of H+ or H−, and having the same index). Then there exists a 
minimal geodesic joining P1 and P2. It is unique if and only R(P1) ∩N(P2) = R(P2) ∩
N(P1) = {0}.
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Proof. Let us suppose that P1, P2 lie in the restricted Grassmannian of H+ (the other 
case is similar or follows using the symmetry ⊥). Note that, by Remark 4.5, A = P1−P2
is compact. Moreover, by the properties of the index of pairs listed in the above remark,

i(P1, E+) = i(P1, P2) + i(P2, E+).

The fact that Pi lie in the same connected component implies that i(P1, E+) = i(P2, E−). 
Thus i(P1, P2) = 0, and the proof follows using the above proposition. ✷

In other words, the Hopf–Rinow theorem is valid in the discrete classes Di of Pcc. We 
examine now the case of the essential projections.

Examples 6.7.

1. Let P, Q be the following projections in E1,

P =
3
P+ 0
0 0

4
, Q =

3
Q+ 0
0 0

4
,

where P+, Q+ are projections of infinite rank and co-rank in H+. Apparently,

R(P ) ∩N(Q) = R(P+) ∩N(Q+) ⊕ 0 and R(Q) ∩N(P ) = R(Q+) ∩N(P+) ⊕ 0.

Thus, if dim(R(P+) ∩N(Q+)) Ó= dim(R(Q+) ∩N(P+)), there cannot be a geodesic 
of P, much less in Pcc, joining P and Q. One can obtain easy examples of this 
situation, for instance if R(Q+) ⊂ R(P+). Then

dim
!
R(Q+) ∩N(P+)

"
= 0 and dim

!
R(P+) ∩N(Q+)

"
= dim

!
R(P+) ¡R(Q+)

"
,

and this can be any number in N ∪ {∞}.
On the other hand if dim(R(P+) ∩N(Q+)) = dim(R(Q+) ∩N(P+)), by Remark 6.1, 
there exists a selfadjoint compact operator Z+ in H+, ëZ+ë ≤ π/2, which is 
P+-codiagonal and such that eiZ+P+e

−iZ+ = Q+. Put Z = Z+ ⊕ 0. Then Z is 
selfadjoint, P -codiagonal, ëZë = ëZ+ë ≤ π/2 and

eiZPe−iZ = Q,

i.e. P and Q are joined by a minimal geodesic (which is non-unique if dim(R(P+) ∩
N(Q+)) Ó= 0).

2. A similar example can be constructed in the class E5. Put P and Q

P =
3
P+ 0

4
, Q =

3
Q+ 0

4
,
0 P− 0 Q−
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with P±, Q± of infinite rank and corank. If dim(R(P+) ∩ N(Q+)) = dim(R(Q+) ∩
N(P+)) and dim(R(P−) ∩ N(Q−)) = dim(R(Q−) ∩ N(P−)) one can construct a 
diagonal geodesic δ(t) = eitZPe−itZ , with Z = Z+ ⊕ Z−. Note that one can choose 
P and Q such that ëP −Që = 1. On the other hand, since

R(P ) ∩N(Q) =
!
R(P+) ∩N(Q+)

"
⊕
!
R(P−) ∩N(Q−)

"
,

with a similar expression for N(P ) ∩R(Q), it follows that one can choose P and Q
in order that

dim
!
R(P ) ∩N(Q)

"
= dim

!
R(P+) ∩N(Q+)

"
+ dim

!
R(P−) ∩N(Q−)

"

is different from dim(N(P ) ∩ R(Q)). Therefore in this case there exists no geodesic 
joining P and Q in Pcc.

3. One can further choose the pairs P+, Q+ and P−, Q− above to be in generic position. 
This implies that P and Q are in generic position, and therefore there exists a unique 
geodesic in P (which lies inside Pcc) joining P and Q.

These examples imply the following:

Corollary 6.8. The Hopf–Rinow Theorem is non-valid in Ei, 1 ≤ i ≤ 5. That is, there 
exist pairs of projections in Ei (1 ≤ i ≤ 5) which cannot be joined by a geodesic.

Proof. The first example shows that this is the case for E1. By means of the symmetries 
⊥ and AdJ , one obtains examples in Ei for i = 2, 3, 4. The second example gives the 
result for the class E5. ✷
Remark 6.9. One of the statements in the Hopf–Rinow Theorem for finite dimensional 
Riemnnian or Finsler manifolds asserts that completeness with the rectifiable metric 
implies that any pair of points can be joined by a minimal geodesic. It is not difficult 
to see that the essential classes are complete with the rectifiable metric. Recall that this 
metric is defined by

dg(P,Q) = inf
)
ü(γ) : γ joins P and Q in Pcc

*
,

where ü(γ) denotes the length of γ, that is, ü(γ) =
s b

a
ëγ̇(t)ëdt. Pick a Cauchy sequence 

(Pn) with respect to the metric dg. Since straight lines are curves of minimal length in 
any vector space, it follows that ëPn − Pmë ≤ dg(Pn, Pm) → 0. Therefore there exists a 
projection P ∈ Pcc such that ëPn − Pë → 0. By the second point in Remark 6.1, there 
exist unitaries Un ∈ Ucc such that UnPU∗

n = Pn, whenever n is large enough. Moreover, 
ëUn − 1ë → 0, since the section mentioned in that remark is continuous. In an open 
ball centered at the origin, where the exponential map of the Banach–Lie group Ucc is a 
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diffeomorphism, it holds that Un = eiZn , where Zn are selfadjoint operators in Bcc and 
ëZnë → 0. Now consider the curves δn(t) = eitZnPe−itZn . Then note that

..δ̇n(t)
.. =

..eitZnZnPe−itZn − eitZnPZne
−itZn

.. ≤ 2ëZnPë ≤ 2ëZnë.

Thus, we find that

dg(Pn, P ) ≤ ü(δn) ≤ 2ëZnë → 0.

This proves that Ei is complete with the rectifiable distance.

6.1. Unique geodesics

In [10], Chandler Davis proved a result characterizing operators which are the differ-
ence of two projections. Let A = A∗, with ëAë ≤ 1. Consider

HÍ = N
!
A2 − 1

"⊥
,

and AÍ = A|HÍ .
Davis proved the following (Theorem 6 [10]):
A selfadjoint contraction A is the difference of two projections if and only if there 

exists a symmetry V in HÍ such that V AÍ = −AÍV .
Moreover, he proved that to each symmetry V which anti-commutes with AÍ, there 

corresponds a unique decomposition A = PV −QV , with explicit formulas for PV and QV . 
The symmetry V is given by

V =
!
1 −

!
AÍ"2"−1/2(P + Q− 1).

Note that (1 − (AÍ)2)1/2 has trivial nullspace, thus its (eventually unbounded) inverse is 
defined.

Remark 6.10. This result was used in [3] to prove that if two projections P and Q are 
in generic position, that is N(A) = N(A2 − 1) = 0, then there exists a unique geodesic 
in P joining them. Moreover, there is a relation between the exponential eiZPe−iZ = Q

(with ëZë ≤ π/2) and the symmetry V (characterized by P = PV , Q = QV ). Namely: 
V = eiZ(2P − 1). Let us prove that this formula still holds if N(A2 − 1) = 0, where 
A = P − Q, which is slightly weaker than asking that P and Q be in generic position. 
Indeed, note that if A = P −Q,

N(A) =
!
R(P ) ∩R(Q)

"
⊕
!
N(P ) ∩N(Q)

"
,

and in particular N(A) reduces P and Q simultaneously. Also it is clear that Davis’ 
symmetry V = (1 −A2)−1/2(P +Q −1) equals 1 in R(P ) ∩R(Q) and −1 in N(P ) ∩N(Q). 
On the other hand,
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N
!
A2 − 1

"
=

!
R(P ) ∩N(Q)

"
⊕

!
N(P ) ∩R(Q)

"
= 0,

means that there is a unique exponent Z, Z∗ = Z, ëZë ≤ π/2, such that eiZPe−iZ = Q. 
If we denote by P0 and Q0 the restrictions of P and Q to their generic part, equal in 
this case (N(A2 − 1) = 0) to H0 = HÍ ¡ N(A), by the same results on existence and 
uniqueness of geodesics (now in H0), there exists a unique Z0, Z∗

0 = Z0, ëZ0ë ≤ π/2, 
such that eiZ0P0e

−iZ0 = Q0. Note that P and Q coincide in N(A), therefore the unitary 
operator ei(Z0⊕0) satisfies also

ei(Z0⊕0)Pe−i(Z0⊕0) = Q.

Since ëZ0 ⊕ 0ë = ëZ0ë ≤ π/2, by uniqueness of geodesics joining P and Q, it follows 
that

Z = Z0 ⊕ 0.

It follows that eiZ(2P − 1) equals 1 in R(P ) ∩ R(Q) and −1 in N(P ) ∩ N(Q), which 
implies that the equality

eiZ(2P − 1) = V

holds in H (under the hypothesis N(A2 − 1) = 0).

Proposition 6.11. Let P, Q ∈ Pcc such that N(A2 − 1) = {0} (A = P − Q). With the 
notations of the above remark, the following are equivalent:

1. Z ∈ Bcc.
2. V ∈ Bcc.
3. Let B = P+Q −1. The polar decomposition of B = W |B| occurs in Bcc. i.e. W ∈ Bcc.

Proof. If Z ∈ Bcc, then apparently V = eiZ(2P − 1) ∈ Bcc.
Suppose that V ∈ Bcc. Let A = P −Q. Note that

(P + Q)2 + (P −Q)2 = 2P + 2Q,

so that 1 − A2 = B2. Thus (1 − A2)1/2 = |B|. If S = W |B| = |B|W is the polar 
decomposition, one has

W = |B|−1S =
!
1 −A2"−1/2(P + Q− 1) = V ∈ Bcc. ✷

The following question arises. Suppose that P, Q ∈ Pcc satisfy that

R(P ) ∩N(Q) = N(P ) ∩R(Q) = 0.



E. Andruchow et al. / Journal of Functional Analysis 268 (2015) 336–362 359
This means that there exists a unique minimal geodesic in P joining P and Q. Does this 
geodesic lie in Pcc? Equivalently, does Z belong to Bcc? The second part of the above 
example settles this question negatively.

If ëP −Që < 1, B above is invertible in Bcc, and thus its polar decomposition occurs 
in Bcc. The first part of the following example shows a case where B is non-invertible
(in fact it is compact), but nevertheless its polar decomposition lies in Bcc.

Examples 6.12.

1. Let Pn, Qn, 1 ≤ n ≤ ∞, be mutually orthogonal projections in L (H = L ×L) of rank 
one such that 1L =

q
n Pn + Qn. Let (αn), (βn) be strictly monotonous sequences 

such that 0 < αn < 1/2 < βn < 1, αn → 0 and βn → 1. Put λn =
ð

αn − α2
n and 

μn =
ð
βn − β2

n. Consider

P =
3q

n αnPn + βnQn

q
n λnPn + μnQnq

n λnPn + μnQn

q
n(1 − αn)Pn + (1 − βn)Qn

4

and

Q =
3q

n Pn 0
0

q
n Qn

4
.

Apparently, P, Q ∈ E5. Straightforward computations show that B = P + Q − 1
equals

B =
3q

n αnPn + (βn − 1)Qn

q
n λnPn + μnQnq

n λnPn + μnQn

q
n(−αn)Pn + (1 − βn)Qn

4
.

Note that all four entries of B are compact in L, and thus B is compact. Also a 
straightforward computation shows that N(B) = {0}. Since B is selfadjoint with 
trivial nullspace, the partial isometry V of the polar decomposition B = V |B| =
|B|V , is in fact a symmetry. In order to prove that V ∈ Bcc, it suffices to show that 
the orthogonal projection onto the spectral subspace corresponding to the positive 
part of B (the sum of the eigenspaces corresponding to positive eigenvalues) belongs 
to Bcc. A simple computation shows that vectors ξ ∈

m
n R(Pn), η ∈

m
n R(Qn), 

such that (ξ, η) Ó= 0, verify that

+
B(ξ, η), (ξ, η)

,
> 0 and

+
B(η, ξ), (η, ξ)

,
< 0.

It follows that the spectral subspace corresponding to the positive part of B is m
n R(Pn) ×

m
n R(Qn). The projection onto this subspace is Q, which belongs to Bcc.
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2. Let P be as above, and

Q =
3q

n(1 − αn)Pn + (1 − βn)Qn

q
n λnPn + μnQnq

n λnPn + μnQn

q
n αnPn + βnQn

4
.

Clearly P, Q ∈ E5. Apparently

B = P + Q− 1 =
3

0 2a
2a 0

4
,

where a =
q

n λnPn + μnQn ≥ 0. Then

|B| =
3

2a 0
0 2a

4
,

and the polar decomposition of B is

B = V |B| =
3

0 1L
1L 0

43
2a 0
0 2a

4
, i.e. V =

3
0 1L
1L 0

4
,

and thus V does not belong to Bcc.

6.2. Geodesics to diagonal projections

Let P ∈ Pcc. Recall from Section 5 that (if H = L ×L, H+ = L × 0) P is of the form

P =
3

x a

a∗ y

4
,

with

x =
Ø
n

αnPn +
Ø
m

βmQm + Ex, y =
Ø
n

(1 − αn)P Í
n + (1 − βm)QÍ

m + Ey

and

a =
Ø
k

λkξk ⊗ ξÍk +
Ø
l

μlηl ⊗ ηÍl,

where αn, βm are strictly monotonous (finite or infinite) sequences 1/2 > αn → 0, 
1/2 ≤ βm → 1, Ex, Ey are the projections onto the eigenspaces of x and y corresponding 
to the eigenvalue 1, and Nx, Ny are the projections onto the nullspaces of x and y. Also 
recall the diagonal projection

Pd =
3q

m≥1 Qm + Ex 0
0

q
n≥1 P

Í
n + Ey

4
.
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Remark 6.13. P and Pd satisfy ëP −Pdë < 1, and the isometry V corresponding to this 
pair belongs to Bcc. Indeed, the fact that B = P + Pd − 1 is invertible, implies that also

B2 = 1 − P − Pd + PPd + PdP = 1 − (P − Pd)2 = 1 −A2

is invertible. It follows that ±1 /∈ σ(A), since A is a contraction, this implies that

ëAë = ëP − Pdë < 1.

The following result is a direct consequence.

Corollary 6.14. Let P ∈ Pcc, and denote by DP be the set of diagonal projections in P
(note that DP ⊂ Pcc). Then

d(P,DP) = inf
)
ëP −Që : Q ∈ DP

*
< 1.

Corollary 6.15. Let P ∈ Pcc. Then there exists an element Pd ∈ DP which can be joined 
to P with a minimal geodesic of Pcc of length strictly less than π/2. In particular,

dg(P,DP) = inf
)
dg(P,Q) : Q ∈ DP

*
< π/2.

Proof. Given P ∈ Pcc, we have shown that ëP − Pdë < 1. By Remark 6.1, there is a 
selfadjoint operator Z ∈ Bcc such that P = eiZPde

−iZ , Z is codiagonal with respect to 
Pd and ëZë < π/2. Moreover, the curve δ(t) = eitZP−itZ

d is a geodesic joining Pd and P
satisfying ü(δ) = ëZë < π/2. ✷
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