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ABSTRACT  

In this work it is shown that thiol-protected Au nanoparticles (AuNPs@SR) of approximately 3.4 

nm in size suffered unexpectedly high radiation damage under standard transmission electron 

microscopy (TEM) operating conditions. For metallic systems (conducting sample) it is expected 

that the greatest contribution to the damage to come from knock-on displacement, but radiolysis 

is the most probable radiation damage mechanism for organic samples. The radiation damage of 

the electron beam produce huge changes in AuNPs’ structure, leading to coalescence of the Au 

cores when their {100} surface are facing each other. The complete coalescence process involve 

thiol desoprtion, AuNPs’ reorientation and surface diffusion of Au adatoms, which produce the 

oriented attachment of the Au cores. The knock-on displacement cannot explain by itself the 

time taken by the entire process. Through a rigorous analysis we rationalize the results 
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 2

considering that because of the small size of AuNPs they have a lower electron density than the 

bulk material, which favors radiolytic damage. 

Introduction 

Most of the advanced analytical techniques involve some kind of radiation (photons or 

electrons are the most popular) to analyze the sample. It is well known that the interaction 

between radiation and matter can cause sample damage, which must be thoughtfully 

characterized and taken into account for correct data interpretation.  

Transmission electron microscopy (TEM) is an advanced technique where electrons are 

accelerated up to energies of hundreds of keV across the sample to obtain structural information. 

In materials science, TEM has huge importance and the radiation damage it produces has been 

extensively studied for bulk materials. Nevertheless, the radiation damage in new materials like 

those based on nanoparticles is less explored. 

Nanoparticles (NPs) acquired great interest in the last few years and many novel applications 

are based on them. Thiol capped gold NPs (AuNPs@SR) are one of the most studied NPs and 

they are considered a model systems when compared with those constituted of other metals. 

AuNPs@SR can be synthetized by several methods depending of the nature of the thiols. The 

two-phase approach by Brust and Schiffrin
1
 is extensively used because it allows excellent size 

control by tuning the thiol/metal ratio. It leads to narrow size distributions for NPs < 6 nm.
2
 

However, some fundamental features like chemical composition and structure are not completely 

described or known. Moreover, the analysis of composition, size and structure performed by 

different and complementary techniques do not always lead to compatible results.
3,4

 In those 

cases it is of paramount importance the understanding and quantification of radiation-damage 

processes.
5,6
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 3

The AuNPs@SR present the fcc structure of Au, however they change their shape according to 

their size. Different geometries for AuNPs were widely reported in literature.
7–11

  Figure 1 shows 

the most commonly observed shapes in the present work: a truncated octahedron (a) and a 

truncated decahedron (Marks Decahedron) (b and c). These geometries are described for bare 

(uncapped) or weak-ligand capped NPs. The truncated octahedron (Figure 1a and 1d) is the most 

stable geometry according to thermodynamic arguments,
9
 and their faces are crystalline planes of 

the {111} and {100} families of an fcc structure. The case of the truncated decahedron described 

by Marks corresponds to pentagonally twinned NP, with plane faces exposing the above 

mentioned families of planes ({111} and {100}). Nevertheless, it is well know that thiols alter 

the surface structure of NPs due to their strong covalent bonds with metallic atoms.
6,12

 Figures 

1d-f show HRTEM images of AuNPs@SR with shapes similar to the above models near the 

[011] axis zone (Figures 1a-c).  Here, a projection of the {111} and the {100} surfaces along the 

[011] axis zone can be observed.  

 

Figure 1: Sphere-models representation of (a) a Truncate Octahedron and (b-c) of a Truncated 

(Marks) Decahedron. (d-f) Representative examples of AuNPs@SR imaged in HRTEM mode. 

It is well known that electron radiation causes damage on samples during a TEM session.
13

 

The radiation damage may have different origins depending on the nature of the samples and the 
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 4

operation parameters. The radiation damage was widely studied for bulk materials like metals 

(conducting), semiconductors, and inorganic solids or polymers (insulators). Electron radiation 

damage acts by several mechanisms depending on the scattering type: Elastic or Inelastic. Elastic 

scattering occurs by electrostatic deflection of the electron beam due to the Coulomb field of the 

atomic nuclei. This scattering gives electron-diffraction patterns and phase contrast in TEM 

images. In both cases, the elastic scattering leds to the so-called knock-on displacement, 

producing changes in the atomic positions or sputtering of the surface atoms. On the other side, 

inelastic scattering occurs by the Coulomb interaction between the electron beam and the atomic 

electrons of the sample. This scattering induces electronic excitation which produces secondary-

electrons, emission of X-rays, and can also be responsible for radiolysis effects or heating.
14

 

There are several papers on radiation damage of particles since the 80’s decade to these days, but 

most of them were performed on bare NPs
15–18

 instead of capped NPs
19,20

. However, the 

radiation damage mechanism was not explored in detail. For this reason, it is paramount to 

deeply study the consequences of electron irradiation damage on capped-NPs.  

The aim of this paper is the characterization and analysis of the main sources of radiation 

damage over AuNPs@SR during TEM imaging. The changes that NPs suffered were recorded in 

HRTEM images over time. First, we described the observed AuNPs coalescence induced by 

electron beam irradiation during HRTEM imaging. Thus, a careful HRTEM analysis under 

different operation condition (varying exposure doses) have shown that two AuNPs coalesce 

only when the {100} planes face each other (oriented attachment). This interesting result was 

confirmed for representative pairs of nanoparticles’ geometries (two truncated octahedrons, 

truncated octahedron and Marks’ decahedron, and two Marks’ decahedrons). Then, the different 

causes of damage –knock-on, radiolysis and thermal heating– were considered and the effect 
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 5

they can have on AuNPs@SR was estimated. We concluded that the main cause of radiation 

damage is attributed to radiolysis process, which cannot be avoided in HRTEM mode at room 

temperature. In this operation mode the radiation damage can drastically alter the sample, 

leading to AuNPs@SR coalescence.  

Experimental 

Synthesis of AuNPs@SR: the nanoparticles were prepared using the two liquid phases method 

developed by Brust and Schiffrin.
1
 First, 137 mg of tetraocthylamonium bromide, TOABr 

(Sigma-Aldrich) were dissolved in 8 mL of toluene (Carlo Erba) in a round bottom flask. Then, 4 

mL of HAuCl4 25 mM solution (0.1mmol of Au) in HCl 100 mM were added and the mixture 

was stirred until the complete transfer of AuCl4
-
 to the toluene phase. The aqueous phase was 

removed and the toluene solution was washed once with 5 ml of H2O to remove the acid excess. 

Afterwards, under constant stir, 9 µL of dodecanethiol (Sigma-Aldrich) were added to the 

mixture. After 10 minutes, 38 mg of NaBH4 in 3 mL of H2O were added quickly. The stir was 

kept for 3 hs to promote a narrow size distribution. Both phases were separated, and toluene was 

evaporated keeping a tenth of this liquid phase. AuNPs were purified by precipitation with 15 

mL of ethanol, and were centrifuged after 30 min. This purification procedure was repeated three 

times.
21

 Then, the AuNPs were dried and stored as powder at -18ºC. 

Specimen preparation: the AuNPs were redispersed in toluene and then drop-casted on 300 

mesh ultrathin carbon film on holey carbon support copper grids. 

TEM imaging and data analysis: Two transmission electron microscopes were used to carry 

out the radiation damage studies: a Phillips CM200 UltraTwin (LaB6) and a FEI Tecnai F20 G2 

(FEG), both operated at 200 keV. The current measurements were developed using a Gatan 646 

Double Tilt Analytical Holder connected to a Keithley 6485 Picoammeter.  
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 6

HRTEM images simulation were carried out with JEMS software.
22

 The proper orientation of 

atomic models of NPs for simulation were made using a software developed in the physics of 

metals division at Centro Atómico Bariloche.
23

  

Results and Discussion 

At the start of the TEM observation, the bright field images of the sample revealed the 

presence of NPs spread across the entire carbon film. However, after some minutes of 

observation of the same area, a coalescence of particles can be obtained. The figure 2 shows the 

difference between the fresh sample and the particles observed by HRTEM after a few minutes. 

The particles viewed at first time were round and homogeneously dispersed, as can be seen 

outside the green coloured area. The particles observed in HRTEM mode or bright field 

condition presented the same characteristics at the green colored area. However, they look rather 

bigger than at the beginning and not as rounded as the particles viewed for the first time. The 

size distribution was obtained from images taken at the same magnification of not irradiated 

areas; it was fitted with a lognormal function resulting in a mean diameter of 3.4 nm ± 0.8 nm 

(see Supplementary Information). 
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 7

Figure 2: Bright field image of AuNPs@SC12. The green marked zone was previously observed 

in HRTEM condition. The image is slightly underfocus to reinforce the contrast. 

Next, it will be shown that the electron beam induces coalescence and ripening processes. 

Because most of the nanoparticles were found to be truncated octahedrons and truncated (Marks) 

decahedrons, in what follows we present studies of radiation damage for both kind of 

nanoparticle shapes. The first pair of particles were two truncated octahedrons (Figure 3). The 

nanoparticles are expected to be randomly oriented before their irradiation. However, most of the 

particles are preferentially oriented along a low-index zone axis. 

 

Figure 3: Coalescence of tow truncated octahedron like AuNPs. Red arrows represent the 

planes type {111} and the blue ones {100} along the [011] zone axis. The images were taken at: 

a) 1037 s, b) 1097 s, c) 1158 s and d) 1195 s after start irradiation. 

Figure 3 shows the coalescence of two truncated octahedrons when {100} planes of each 

particle are facing to each other. In the beginning -Figure 3a and Figure 3b-, the planes {111} 

and {100} from one particle are not aligned with the same family of planes of the other. In 

Figure 3c the {100} faces of each octahedron are close to be parallel. At this point, the shape of 

the octahedron at the bottom of this panel starts to change. It seems that few Au atoms form a 

column between the two AuNPs. Moreover, there is no evidence of boundaries between the 

particles. This HRTEM image was simulated to corroborate that both AuNPs are at the same 

height with both planes {100} facing each other (see Supplementary Information).  Finally, in 
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 8

Figure 3d it could be distinguished a unique orientation for the {111} and the {100} families of 

planes. Furthermore, the evolution of the two octahedron system continued until the formation of 

a unique faceted NP was reached. This coalescence process where two particles joint to form a 

new bigger one is also called Smoluchowski ripening.
24

 An increase in the roughness of the 

amorphous carbon substrate is also evident which a consequence of electron beam radiation 

damage is. 

It is worth to mention at this point that the coalescence seems to be reached after the 

reorientation of the {111} and {100} planes of the NPs, which is attributed to an “electron 

wind”.
25

 This reorientation is evident in the smaller nanoparticles. Even more, the nanoparticles' 

displacements can be as large as their sizes. However, this pivot is not observed in the bigger 

NPs due to their higher masses (moment of inertia). 

At this point, the coalescence observed looks similar to the previously reported on bare 

AuNPs,
17,18

 but in this case the AuNPs are capped by an alkanethiolate monolayer. The first 

question is: RS monolayer is still on AuNPs? In order to describe the coalescence of two 
particles of similar sizes, two scenarios are considered. In the simplest reasoning, the 
particles coalesce when their naked surfaces encounter. Previously, the radiation damage 
must have stripped-off the RS moieties at least from the {100} faces. In a more complex 
reasoning, if the capping-agent were still on the {100} faces that stick each other the 
adsorbates should leave both faces within about a minute while coalescing (Figures 3c-d, 
4d-e and 5b-g). In other words, a concerted movement of the RS species should occur, in 
order to lead to a single fcc structure like the ones observed in the figures 3d, 4e and 5g. 
Furthermore, this concerted mechanism could also be done across {111} faces and not only 
across {100} faces. But coalescence was not observed across {111} (see below). On the 
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 9

other hand, as the total metallic core surface decrease due to the coalescence, the RS 
moieties could not simply rearrange over the new formed particle because their coverage 
would increase. However, when the size increases the coverage decreases2,26 to the same 
value as the self-assembled monolayer on flat surfaces.26 In a simple calculation, two 
nanoparticles of similar sizes than those shown in Figure 3 are formed by 976 Au atoms 
and 187 RS chains (3 nm) and 314 Au atoms and 91 RS chains (2nm), respectively.2 The 
coalescence of these AuNP@RS would lead a bigger one of 1290 Au atoms and 221 RS 
chains (3.2 nm)2. However, the sum of RS chains of both individual AuNP@RS are higher 
than the expected (57 RS chains in excess). Also for this reason, the second mechanism 
does not seem to be probable. 

It is clear that at least the {100} faces must be free of adsorbed molecules (uncapped or bare). 

Otherwise, the coalescence process shown in Figure 3 would not occur. Notably, it was reported 

that the coalescence processes of two naked NPs is a spontaneous and non-activated processes.
19

 

The electron radiation damage could produce the total or partial desorption of the adsorbed 

thiols. However, it is not clear up to now whether the adsorbates leave the surface as thiolate, 

thiyl, radical fragments and/or some of the reported staples.
3,27

 After thiol desorption, the 

exposed metallic surface of a NP can get in contact with the bare surface of a surrounding NP, 

thus producing their coalescence. 

It is commonly believed that the increase in temperature is responsible for the adsorbate 

desorption. However, the electron beam heating is overestimated,
7
 and the calculation of the 

temperature rise shows an increase of less than 2 K in AuNPs smaller than 10 nm (See 

Supplementary Information for details in calculation). 
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 10

As a second case study, Figure 4 shows the coalescence of a twinned truncated (I) octahedron 

and a truncated decahedron (II) AuNPs. Once again, the coalescence process starts just when the 

{100} faces of both NPs are facing each other (Figure 4e). The black arrows (Figure 4b) are 

showing the stacking fault planes where the {111} and {100} planes are in similar directions. It 

is interesting to note that the atomic planes rearrange, so that the stacking fault vanishes. Only 

when it seems to disappear, the coalescence between both AuNPs starts. It is noticeable that just 

before coalescence, Figure 4d, the truncated octahedral NP (I) does not expose a complete {100} 

surface to the other NP. This observation suggests that coalescence occurs when equal planes are 

facing each other. Even more, this result suggests that if the existence of a defect avoids the 

facing of the {100} faces, the coalescence would not occur until the defect disappears.  

 

Figure 4: Coalescence of a twinned truncated octahedron (I) and a truncated decahedron (II). The 

images were taken at: a) 346 s, b) 390 s, c) 463 s, d) 498 s and e) 553 s after start irradiation. The 

red arrows indicate the planes {111} and the blue ones {100} planes along the [011] zone axis. 

Black arrows show the stacking fault plane, and the dashed arrows show planes in the other side 

of this plane. 

 The last processes to be illustrated involve two pairs of truncated (Marks) decahedrons (Figure 

5). These AuNPs were all together in the same region and received exactly the same radiation 

dose. The two particles in the top-panels (Figure 5 a-g) show, once again, the coalescence 

through the {100} faces of both AuNPs. In the other case (Figure 5 h-n), the bottom AuNP 
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 11

reduces its size over time until it disappears. This mechanism was reported and described as an 

Ostwald ripening process, which was previously observed by STEM.
19

 On the contrary, the 

particles bigger than ~2nm seem to coalesce when the {100} faces encounter. The Ostwald 

ripening occur by unbalanced atomic diffusion from the smaller NPs to the bigger one. On the 

basis of computer simulations it was proposed that Ostwald ripening can be induced by 

electronic irradiation occur without thiol desorption.
19

 However, the system could be trapped on 

local energy minimum, which could impede the full Ostwald ripening process. Also, the Ostwald 

ripening on a totally naked AuNP is not favored.
19

 Nevertheless, the presented results suggest 

that the ripening is favored when the {100} faces are naked. In all cases, after coalescence, the 

new formed particle suffer a rearrangement of their atoms to get a shape with a lower surface 

energy. This is evident in the Figure 5e-g, where the arrows indicate the vertex changes on the 

bigger (up-left) particle. This kind of rearrangement of the surface atoms was reported for 

different metallic NPs.
28,29

  

 

Figure 5: Four truncated (Marks) decahedron suffering coalescence (a-g) and ripening (h-n). 

These AuNPs were nearby and consequently exposed to the same radiation doses. The AuNPs 
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 12

are near to the [011] zone axis. The images were taken at: (a;h)=110 s, (b;i)=170 s, (c;j)=274 s, 

(d;k)=361 s, (e;l)=385 s, (f;m)=460 s and (g;n)= 485 s. 

Noticeably, no coalescence nor ripening events were observed between surfaces that exposed 

planes different from the {100}, even when two nearby NPs rotate (or pivot) during a long time 

(see Supplementary Information, Figure SI 3). In these cases, it is observed that nanoparticles’ 

crystalline planes are not aligned. Moreover, both coalescence processes do not depend on the 

received doses, but on nanoparticles’ orientation: the most important factor in coalescence 

phenomena here described is the parallel alignment of the {100} faces. 

All these results suggest that at least the {100} faces are uncovered by thiols when the 

coalescence occurred. This can be explained considering that radiation damage can induce thiol 

desorption. Indeed, migration of Au atoms and Au-SR moieties were reported for the case of 

ripening.
19

 In this direction it is proper to analyze the possible mechanisms of radiation damage 

involved in the capping degradation. 

Analysis of Mechanism Involved in Radiation Damage  

After discarding the temperature increase as a significant source of sample damage, two main 

mechanisms involved in this kind of radiation damage still remains: Knock-On displacement (by 

elastic scattering) and Radiolysis (by inelastic scattering).  Knock-On displacement involves the 

energy transfer during elastic scattering between the incoming electron and the atomic nucleus of 

the sample. The energy transferred could displace the atom away from their natural vibrational 

position, giving the breakdown of several chemical bonds. The term “radiolysis” involves several 

chemical changes induced by inelastic interaction between the incoming electrons with the 

atomic electrons in the sample. The inelastic scattering produce electronic excitation or 

ionization which could relax by several ways (e.g. chemical bonds scission). The chemical bonds 
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 13

scission implies atomic displacements. The necessary conditions for this atomic displacements 

are localization of an electronic excitation with sufficient energy and for sufficiently long times 

(longer than the time for an atomic vibration, or ~l ps). That mechanical relaxation of the 

surrounding atomic cores leads to a bonding instability, in many cases involving displacement of 

atomic cores. In this way the potential energy inherent in electronic excitations can be converted 

to momentum of a departing atom nucleus.
30

 For conducting materials, like metals, the electrons 

in their conductive bands compensate extremely fast (~1fs) the ionization processes or collective 

electronic excitation (plasmonic excitation) decreasing the radiolysis effects.
30

 However, in non-

conductive materials, like organic materials, the charge reposition is not so fast to avoid chemical 

scission due to electronic rearrangements of excitation or ionization. The nanoparticles studied 

here should not be considered a priori nor as a typical conducting materials nor as an insulator. 

Then, it is necessary to evaluate and compare both mechanisms to determine which one is the 

most important. This could help to establish possible strategies to avoid or diminish the TEM 

radiation damage. Egerton reported in several articles and reviews about TEM and SEM 

radiation damage.
14,31,32

 Cross-section values (σ) or critical doses (De) were determined for 

different bulk materials. In the next paragraphs, both mechanisms are described and compared. 

First, we analyzed the atomic displacement produced by elastic scattering, which can occur in 

all kind of samples but is evident in crystalline specimens (blurring the electron diffraction 

pattern). In order to estimate the cross sections for knock-on events, σd, we will start focusing on 

a few relevant magnitudes: the energy of the incident electrons, E0, the maximum energy 

transferred by knock-on impact of an incoming electron, Emax, and the energy needed to get an 

atomic displacement, Ed. When Emax < Ed, displacement damage is absent since the incident 

energy is bellow certain threshold incident energy (E0
th

). E0
th

 is above 200 keV for most of the 
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 14

elemental solids, but its value is considerably lower for organic materials (lighter elements). 

According to Egerton et al. Emax, is given by
31

: 

789: = 7<(7< + 2><?@)
A7< + B1 + ><C D@ C?@

2 E
≈ 27<(7< + 2><?@)

C?@  

where >< is the electron rest mass, ? is the speed of light and C is the mass of the knocked 

atom. Note that the energy transferred rises as the energy of the incident electrons increases, and 

it is larger for lighter elements. On the other hand, the displacement energy, Ed, strongly depends 

on the strength and number of bonds in which the specific atom participate. In the case of small 

NPs most of the atoms are on the surface. For this reason, it is proper to consider that sputtering 

displacement is more important than “bulk” knock-on damage. Thus, the AuNPs@SC12’ surface 

chemistry might be considered in some detail in order to get reliable results. Another drawback 

comes from the fact that displacement energies 7G are not well known for organic molecules. 

Nevertheless, an estimation of the total atom bond energy can be used instead 7G as good 

approximation.
32

 Two models of thiol adsorption has been reported: on bridge “standard” site 

and staple motif. Recently, it was proposed that thiols adsorb as thiyl moieties rather than 

thiolate moieties.
33

 Henceforth, the RS moieties represent either kind of chemical species, thyil 

or thiolate. In the standard model, the sulfur atom is bonded on bridge sites of a perfect Au(hkl) 

surfaces.
33–35

 In the staple motif model two RS moieties are bonded to an Au adatom, and also to 

the Au surface atoms (Au-RS-Auad-RS-Au).
33–35

 For the Au(111) surface the energy per RS unit 

is lower in the staple configuration than for the bridge site. Notably, the opposite was reported 

for Au(100), being the adsorption on the bridge site more favorable than on a staple motif.
35

 In 

our calculation we have chosen the adsorption energy that corresponds to the less stable RS 

moiety (i.e RS in a bridge site of an Au(111) surface; adsorption energy of -1.5 eV)
33

, which is 
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 15

equivalent to the greater knock-on cross-section (see below). The  energy for Au on Au(111) 

surface is -3.44 eV and for Au on borders is -3.12 eV.
34

 The bond dissociation energy of the 

relevant covalent bonds are: C-H 4.2 eV; C-C 3.7 eV and C-S 3.2 eV (as an approximation, it is 

considered that these energies are the same than those on an alkanethiol molecule).
36

 As an 

example for AuNPs@SC12 consider that a sulfur atom is displaced when two bonds are broken: 

one between sulfur and the alkyl carbon (S-C) and the other between sulfur and gold (Au-S), 

taking into account the different models on RS adsorption. The energy 7G is the sum of every 

broken bond. The atom displaced is bold labelled in Table 1 and Figure 6. Table 1 shows the 7G 

values considered in each displacement case. These estimated values for 7G can be used to 

calculate the cross section for knock-on, HG, displacement as: 
32

  

HG = (0.25barn)I(J)K@ A789:
7G

− 1E 

where I(J) = MN@(J/?)NP = (1 − J@/?@)(J/?)NP, and K is the atomic number of the displaced 

atom. Clearly, the probability to get an atomic displacement increases with the atomic number, 

but decreases with the atomic mass. Then, the mean time between damage events (Q) could be 

estimated from: 

Q = 1
RHG

 

where R is the electron flux. Figure 6 shows the variation of the atomic displacement cross 

section as a function of the energy of the incident beam. The most probable displacement by 

knock-on at 200 keV acceleration voltage corresponds to the sulfur atom (Au-S-chain). Note that 

for this electron-acceleration it is infrequent to displace gold atoms off the metallic surface (Au-

Aus-S). Thus, the reduction of the acceleration voltage, a standard strategy to reduce the knock-

on damage, would have negligible effect in the Au atoms displacement. In addition, the 
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 16

displacement of total thiol molecule was considered (Au-S-chain), but its cross-section is 

smaller than that of amorphous carbon. All in all, the time required for each damage event is 

very long. While on average it takes ~17 min to displace a sulfur atom by knock-on (Table 1), 

the time required to observe coalescence, which necessarily implies many damage events, was 

shorter than this figure (10
2
 s). Moreover, as a direct comparison between theoretical and 

experimental data could not be straightforward, we also considered a lower  7G (higher cross 

section) for Au-S-C knock-on displacement. If one half of the previously used  7G was taken (i.e  

7G =2.4 eV  for Au-S-C) the time per each damage event will be ~8 minutes. Then, the S 

displacement by knock-on should not be considered as the main source of radiation damage. In 

the same way, the knock-on displacement cannot explain the migration of Au atoms or Au-SR  

moieties between NPs necessary for the Ostwald Ripening process.
19

 In figure 6 the knock-on 

cross section curves for Au atoms on borders and Au-SR moieties (orange and green dashed 

lines, respectively) show that they would only be displaced if the energy of the incoming 

electrons is bigger than 200 keV. 
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 17

Figure 6: Knock-On cross section for atomic displacements of different atoms and molecular 

moieties on alkanethiol protected gold nanoparticles. 

Table 1: Bond types and cross sections for knock-on and radiolysis as mechanisms of radiation 

damage. Accelerating voltage = 200 keV,  S= 2.8×10
18

 e·s
-1

·cm
-2

.  

Bond Ed  (eV) σd (barn) T (s) Mechanism 

Nanoparticles
34

 

Au-Aus-S 5.32 - - Knock-On 

Au-S-C 
4.7  

(~2.4)
a
 

355 1006 
Knock-On 

789 453 

Au-S-chain 1.84 59 6053 Knock-On 

S-C-C 7 105 3401 Knock-On 

C-C-C 7.4 98 3644 Knock-On 

C-H 4.2 60 5952 Knock-On 

Bulk Mat.
31

 

Carbon film 8 89 4013 Knock-On 

Organic  10
5
-10

8
 4–0.004 Radiolysis 

Inorganic  0.1-10
6
 40000–0.4 Radiolysis 

Conducting 10-50 10
2
-10

3
 4000-400 Sputtering 

a
 sub-estimation of the Ed value considering the half of the calculated value for both bonds 

scission. 

The last radiation damage mechanism to be studied is radiolysis, which is associated with 

inelastic scattering. The energy loss of the incoming electrons can produce electronic transitions 

in the sample. One of the effects of these electronic transitions is to drive chemical reactions 

between organic or inorganic species. Radiolysis is, in general, less important in conducting 

materials like metals. For the sake of comparison, Table 1 presents the displacement energy, 7G, 
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cross section and the involved mechanism in alkanethiol capped gold nanoparticles. The range of 

values for radiolysis cross sections reported in the literature for organic or inorganic bulk 

samples is also shown.  

Thiol capped nanoparticles could not be classified as typical organic, inorganic or metallic 

materials. They are not conducting materials -as bulk metals are- and could be similar to either 

organic molecules or inorganic materials. Furthermore, the smaller NPs have discrete electronic 

levels similar to molecules.
27

 Whatever the chemical nature chosen for the comparison was, the 

time-scale of the radiolysis events is by far smaller than those estimated for knock-on 

displacements. Moreover, considering that radiolysis causes electronic excitation in the sample, 

it is expected that the frontier molecular orbitals close to the sulfur atom were affected. Then, it 

is reasonable to hypothesize that RS units and/or Aus-S-chain units would detach from the NPs’ 

surface before the coalescence or ripening processes starts. Scheme 1, panel A, represents the RS 

desorption due to radiolysis. The thiol desorption is a necessary but not sufficient condition for 

the coalescence of the nanoparticles. According to our experimental findings the particles 

coalesce only when two RS free {100} faces encounter (Scheme 1, panel B). This can be 

explained considering that the electron flux produce their pivot and/or rotation.  
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Scheme 1: (A) Radiolysis as the main radiation damage mechanism before the AuNPs 

coalescence. (B) RS desorption, followed by coalescence of AuNP@DDT under the electron 

beam in TEM. Compare with HRTEM images of Figure 3. 

Further reasoning is needed to understand why only the {100} faces are involved in 

coalescence and ripening. On one side, the thiol (and/or Aus-S-chain units) would be detached 

through radiolysis processes irrespective of the surface orientation ({100} or {111} faces). The 

thermodynamic driving force for crystal growth is the decrease in total energy. This decrease is 

the reason of the Ostwald ripening. For the oriented attachment observed in this study the same 

principle is applicable, neglecting entropy changes.
37

 The surface energy of solids is related to 

their sublimation enthalpy. For FCC crystals, the surface energy ratio between faces {111} and 

{100} is M{UUU} M{U<<}⁄ ≅ 0.87 (see Supplementary Information). This means that {100} faces are 

more energetic than {111} faces, hence the coalescence across {100} faces is thermodynamically 

favored. On the other side, several early studies on Pt and Au NPs showed the atomic 

reconstruction of the {100} face.
7,16,28

 This atomic reconstruction is a clear example about the 

higher surface energy of {100} faces. 

Conclusion 
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This study explains the mechanism by which AuNP@SR are affected by the electron beam in 

the TEM. The radiation damage produces considerable sample modification when Au 

nanoparticles protected by alkanethiols are imaged in high-resolution TEM under standard 

operation conditions. The lack of understanding of the physical process involved during TEM 

characterization can lead to a wrong characterization of this kind of nanosystems. We observed 

that the particles can approach each other, and suffer coalescence and ripening as a consequence 

of their irradiation. Interestingly, these processes only occur between nearby particles when the 

{100} surfaces face each other, but they were not observed among other crystal orientations. 

Furthermore, the radiation damage does not depend on received doses but it does depend on 

crystal orientation.  

The coalescence of thiol protected AuNPs only occur if their protecting monolayer is stripped 

of, which implies the thiol molecules desorption. The desorption of the thiol of {100} surfaces 

face seems to be the most probable scenario in order to maintain the stability of the coalesced 

particle. Otherwise, the number of total RS chains available of the two original particles would 

overcome the maximum calculated for the coalesced particles. Thes thiol desorption is probably 

the main effect of radiation damage during a characterization routine by TEM. The actual time 

needed to coalesce NPs is shorter than the time of damage calculated taking into account only 

knock-on radiation damage. For this reason, the main radiation process that favors the 

coalescence is radiolysis rather than knock-on. The radiolysis induces the RS desorption, at least, 

from the Au(100) surfaces. Otherwise, no coalescence would be observed. Furthermore, being 

the radiolysis the main source of radiation damage, partial or complete RS desorption is a 

probable scenario. In this context, the coalescence of the resulting naked AuNPs is more 

probable through the {100} faces due to their relative surface energy. The deep analysis of all of 
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the probable irradiation damage mechanisms affecting a nanosystem gives another frame to the 

TEM characterization of this kind of materials. The nature of the radiation damage shows that 

the AuNPs behave more like as an insulating material than a conductor when irradiated in the 

TEM, which is interpreted as a size-effect. 

The proper study of radiation damage of each sample is needed to arrive to confident 

interpretation of materials behavior.  
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