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Abstract

We establish some properties of the zeroes of sums and differences of contiguous Bessel
functions of the first kind. As a byproduct, we also prove that the zeroes of the derivatives
of Bessel functions of the first kind of different orders are interlaced the same way as
the zeroes of Bessel functions themselves. As a physical motivation, we consider gated
graphene nanodots subject to Berry-Mondragon boundary conditions. We determine the
allowed energy levels and calculate the mean charge at zero temperature. We discuss in
detail its dependence on the gate (chemical) potential. The effect of temperature is also
commented.

Bessel functions, graphene, quantum nanodots, circular billiards

1 Introduction

Bessel functions are among the most ubiquitous special functions of mathematical physics. They
frequently appear in the study of problems with both cylindrical and spherical symmetries. In
particular, the properties of their zeroes, of the zeroes of their derivatives and of combinations
of different Bessel functions and/or their derivatives frequently appear when solving boundary
value problems of physical interest [1].

Some properties of such zeroes have been known since long ago [2]. Others, have been
proved more recently. To give only a few examples, in [3] some bounds for the first positive
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zero of a combination (involving the zero itself) of a Bessel function and its derivative were
obtained. Reference [4] presents a study of zeroes of other combinations of Bessel functions of
the first kind and their derivatives, including the zeroes of the second derivative as a particular
case. Several results concerning zeroes of Bessel functions are presented in [5]. The problem
of the eventual coincidence of zeroes of Bessel functions of different orders, when such orders
differ by an amount which is not a positive integer is addressed in [6]. Studies of the interlacing
of zeroes of Bessel functions of first and second kinds and of their derivatives are contained
in [7, 8, 9]. Finally, [10] presents an analysis of the zeroes of other combinations of Bessel
functions of the first kind and their derivatives (equivalently, zeroes of combinations of Bessel
functions of consecutive orders which again depend on the zeroes themselves), a problem arising
in connection with the study of Euclidean quantum gravity on the four-dimensional ball.

In this paper, we study the relative positions of the zeroes of sums and differences of Bessel
functions of the first kind of consecutive (real and non-negative) orders and their interlacing. As
a byproduct, we prove that the zeroes of the derivatives of such Bessel functions are interlaced in
a way identical to the well-known interlacing of the zeroes of the corresponding Bessel functions.

The consideration of the linear combinations of Bessel functions just described is motivated
here by the investigation of the spectrum and the mean charge of a graphene circular nan-
odot, and the dependence of the charge on the externally applied gate potential. Within the
continuum limit (Dirac theory) such a nanodot can be described by a graphene disk with Berry-
Mondragon [11] (or MIT bag [13]) boundary conditions (BCs) imposed on the Dirac fermions
at the boundary. Berry-Mondragon BCs are one in a family of boundary conditions leading to
a self-adjoint Dirac Hamiltonian [14].

The exceptional properties of graphene, a single atomic layer of carbon atoms, are widely
known. So, we will not give a detailed list of them here. The interested reader is referred, for
instance, to [15, 16, 17, 18]. The fact that graphene is described, in the continuum limit, by
a massless Dirac equation was demonstrated theoretically in [19, 20], and experimentally con-
firmed more than twenty years later [21]. Since then, many of the predictions of a “relativistic”
massless Dirac theory and of field-theoretic methods as applied to this new material have been
confirmed [22, 23, 24]. Among such predictions are the absence of a gap in infinite samples of
graphene and a non–vanishing minimal conductivity which, together, constitute a major obsta-
cle for further application of this two-dimensional material to controllable electronic devices.
This fact triggered a huge number of studies aimed at opening an energy gap in graphene. One
of the possible ways of achieving this goal is the use of samples of finite size, like nanoribbons
and nanodots. An overview of the state of the art in this field, along with further literature, can
be found in several recently published review articles on the transport and electronic properties
of graphene nanostructures, including nanoribbons and nanodots [16, 17, 25, 26, 27].

In a recent article, we studied the mean charge density and the longitudinal conductivity
of disordered graphene nanoribbons when Berry-Mondragon boundary conditions are imposed
at their edges [28] and compared our results with the available experimental data. In this
paper, we use the methods of quantum field theory (QFT) to evaluate the mean charge in a
graphene nanodot with the geometry of a disk and to reveal its dependence on the applied gate
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voltage. The model we use proved to be applicable to the description of graphene nanodots
of intermediate size [29]. Our present calculation shows that the mean charge presents jumps
of equal height each time the gate voltage reaches the value of an allowed eigenenergy. Since
such eigenenergies are determined by the zeroes of sums and differences of Bessel functions of
the first kind of consecutive integer orders, a precise knowledge of the positions and interlacing
properties of such zeroes is useful in order to predict the number of jumps in a given range of
the gate voltage.

The outlay of the manuscript is the following. We start by introducing the notation and
formulating the physical problem, which requires the investigation of the Bessel functions:
in Section 2 we present the conventions adopted and determine the spectrum of graphene
nanodisks. We continue in Section 3 by stating and proving the Theorem 3.1 concerning the
positions of the zeroes of differences of Bessel functions of the first kind of orders differing by
one. Its corollary gives the precise interlacing of such zeroes. In section 4 we prove, also for
nonnegative orders, a theorem (Theorem 4.1) concerning the ordering of zeroes of sums of the
same Bessel functions. Their interlacing with the zeroes studied in the previous section and
with the zeroes of Bessel functions and of their derivatives result as corollaries. A new proof of
the interlacing of the zeroes of the derivatives of Bessel functions, which is identical to that of
the zeroes of Bessel functions, is also obtained. Although our physical problem requires only
the consideration of integer orders of Bessel functions, we get more general results, holding for
real nonnegative orders. Finally, in Section 5 we present the calculation of the mean charge
of Berry-Mondragon graphene nanodisks through field-theoretical methods [30], while some
concluding remarks and comments appear in Section 6.

2 Graphene nanodisks. Conventions and energy spec-

trum

In the continuum description of charge carriers in graphene, which has been found to be quite
accurate [15], the behaviour of the wave function is governed by the Dirac equation [19, 20].
For a single Dirac cone (valley) its covariant form can be written as

/Dψ(x) = 0 , (1)

where ψ = (ψ1, ψ2)
T is a two component spinor,

/D = iγ̃µ∂µ, (γ̃) ≡ (γ0, vFγ
1, vFγ

2),

and γ0,1,2 are 2× 2 Dirac (gamma) matrices in either of the two nonequivalent representations
of the Clifford algebra in 2+1 dimensions. Here and below we work in natural units, ~ = c = 1.
In these units, the Fermi velocity vF ≈ 1/300.
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We choose, in one of the two valleys, the following representation of the Dirac matrices in
Minkowski space-time (with metric (+,−,−))

γ0 =

(

1 0
0 −1

)

, γ1 =

(

0 −1
1 0

)

, γ2 =

(

0 i
i 0

)

.

Since we consider the parity–even configuration, the contributions from different valleys and
for different spins just sum up; thus, to obtain results for a real graphene sample, one has to
introduce the degeneracy factor, N = 4.

In order to treat the problem at hand, i.e., the problem of a graphene disk of radius R, polar
coordinates (r, θ) are better suited. In such coordinates, the Hamiltonian, H , corresponding to
eq. (1) in the absence of external fields, is given by

1

vF
H = iγ0γr

∂

∂r
+
i

r
γ0γθ

∂

∂θ
, (2)

with

γr =

(

0 e−iθ

−eiθ 0

)

, γθ =

(

0 −ie−iθ

−ieiθ 0

)

.

The Berry–Modragon BCs, which we impose at the boundaries of the nanodot, were de-
veloped by considering fermions localized to a compact region due to a ‘locking’ infinite mass
potential [11]. They are the 2+ 1 analogue of the so-called MIT bag BCs, introduced to model
confinement in Quantum Chromodynamics in 3 + 1 dimensions [13]. They imply zero current
flux in the direction perpendicular to the boundary. Written in a γ-representation-independent
way, they read

1 + iγµnµ

2
ψ

∣

∣

∣

∣

B

= 0 , (3)

where B is the boundary of the region to be considered and nµ is the 2+1–dimensional external
normal vector at the boundary. In the present case, they read

1 + iγr

2
ψ

∣

∣

∣

∣

r=R

= 0 .

These conditions can also be expressed in terms of the components of the bi-spinor ψ = (ψ1, ψ2)
T

as
ψ1(R, θ) + ie−iθψ2(R, θ) = 0. (4)

The eigenvalue problem, Hψ = Eψ, corresponding to the Hamiltonian in equation (2) can
be written explicitly as follows

(

0 ie−iθ(∂r −
i
r
∂θ)

ieiθ(∂r +
i
r
∂θ) 0

)(

ψ1(r, θ)
ψ2(r, θ)

)

= E

(

ψ1(r, θ)
ψ2(r, θ)

)

, (5)

where E = E
vF
.
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Let us first study zero modes, E = 0. In this case, one has

(∂r +
i

r
∂θ)ψ1(r, θ) = 0

(∂r −
i

r
∂θ)ψ2(r, θ) = 0 .

Thus, the single-valued solutions which are square-integrable at the origin are

ψ(r, θ) =

(
∑∞

n=0 anr
neinθ

∑∞
l=0 blr

le−ilθ

)

,

with some arbitrary constants an, bl. It is easy to check that, when the boundary condition (4)
is imposed, no zero mode is left.

In the case E 6= 0, the usual procedure leads to

ψ(r, θ) =
∞
∑

n=−∞

(

ane
inθJn(|E|r)

−i |E|
E
ane

i(n+1)θJn+1(|E|r)

)

, (6)

where Jn(z) is the Bessel function of the first kind of order n, and an is a normalization factor
to be defined in what follows. Note we have already imposed periodicity in θ and the square
integrability at r = 0. In this case, the boundary condition (4) leads to [11, 29]

Jn−1(|E|R)−
|E|

E
Jn(|E|R) = 0, n = 1, . . . ,∞

Jn−1(|E|R) +
|E|

E
Jn(|E|R) = 0, n = 1, . . . ,∞ . (7)

From these equations, it is clear that the spectrum is symmetric since, changing E → −E simply
interchanges both equations. The allowed positive energy modes are given by

E∓
n,k =

vF
R
λ∓n−1,k , (8)

where λ−n−1,k is the k-th positive zero of Jn−1(z)− Jn(z), while λ
+
n−1,k is the k-th positive zero

of Jn−1(z) + Jn(z).
The normalized eigenfunctions are thus given by

ψ∓
n,k,α(r, θ) = ane

inθ

(

Jn(E
∓
n,kr/vF )

∓iαeiθJn+1(E
∓
n,kr/vF )

)

, (9)

where α = |E|
E
, and

a−2
n =

4π2R

|E|
Jn(|E|R)Jn+1(|E|R). (10)
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This model for a graphene disk (also called a circular neutrino billiard) was originally formulated
in [11]. In [29] it was shown that its predictions are describing relatively well the experimental
results for graphene nanodots with diameters & 100nm.

In the next two sections, we will show that the positive eigenenergies can be ordered in a
very precise way and, thus, numbered through a unique index q, q = 1, . . .∞, since there is no
finite accumulation point for the sequence they form. This being an elliptic boundary problem
[14], the existence of such order is not surprising, but this fact will be useful in finding the gap
and in estimating the number of jumps in the mean charge of quantum nanodots for a given
range of variation of the gate voltage.

3 Position of the positive zeroes of Jν−1(z)− Jν(z)

Throughout this and the next sections, jν,k is the k-th positive zero of Jν(z), j
′
ν,k is the k-th

positive zero of J ′
ν(z), λ

−
ν−1,k is the k-th positive zero of Jν−1(z)−Jν(z), where ν ∈ R, ν ≥ 1 and

k ∈ N \ {0}. Most of our results below arise from a detailed consideration of the well-known
relations [2], valid for z > 0,

Jν−1(z) = J ′
ν(z) +

ν

z
Jν(z) , (11)

Jν(z) = −J ′
ν−1(z) +

(ν − 1)

z
Jν−1(z) . , (12)

and their immediate consequences,

Jν−1(z)− Jν(z) = J ′
ν(z) +

ν − z

z
Jν(z) , (13)

Jν−1(z)− Jν(z) = J ′
ν−1(z) +

z − (ν − 1)

z
Jν−1(z) . (14)

We also make use of the equally well-known facts that jν,k > j′ν,k > ν, ∀k ≥ 1 and of the
interlacing of the zeroes of Jν(z).

Theorem 3.1.

1. λ−ν−1,1 > ν

2. Between two consecutive positive zeroes of Jν(z), there exists exactly one zero of Jν−1(z)−
Jν(z) and v.v.
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3. Between two consecutive positive zeroes of Jν−1(z), there exists exactly one zero of Jν−1(z)−
Jν(z) and v.v.

4. There is no zero of Jν−1(z)− Jν(z) in the interval [jν−1,k, jν,k]

5. There is exactly one positive zero λ−ν−1,1 between z = 0 and z = jν−1,1, and it satisfies

j′ν−1,1 < λ−ν−1,1 < jν−1,1 (15)

ν < λ−ν−1,1 < j′ν,1 < jν,1 (16)

6. ∀k ≥ 1

jν−1,k < j′ν−1,k+1 < λ−ν−1,k+1 < jν−1,k+1 (17)

jν,k < λ−ν−1,k+1 < j′ν,k+1 < jν,k+1 (18)

Proof of 1:

In a neighborhood of z = 0

Jν(z) =
(z

2

)ν
[

1

Γ(ν + 1)
+O(z2)

]

.

As a consequence, for z 6= 0 in a neighborhood of z = 0, Jν > 0, Jν−1(z) − Jν(z) > 0 and
J ′
ν > 0.
Moreover, it is known that ν < j′ν,1 < jν,1 [2]. Then, both terms on the right hand side of

equation (13) are positive ∀ 0 < z ≤ ν, and there is no zero of Jν−1(z)− Jν(z) in this interval.

Proof of 2:

Equation (13) can be rewritten as

Jν−1(z)− Jν(z) = z−νez
d

dz

(

zνe−zJν(z)
)

.

Note that between two zeroes of the function zνe−zJν(z) there is at least one zero of its
derivative, and, thus, at least, one zero of Jν−1(z) − Jν(z). Now, the zeroes of zνe−zJν(z)
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correspond to zeroes of Jν(z). Thus, between two consecutive zeroes of Jν(z) there is, at least,
one zero of Jν−1(z)− Jν(z).

Moreover, from equations (11) and (12),

J ′
ν−1(z)− J ′

ν(z) = Jν(z)
(ν

z
− 1

)

+ Jν−1(z)

(

ν − 1

z
− 1

)

= Jν(z)

(

2ν

z
− 2−

1

z

)

+ (Jν−1(z)− Jν(z))

(

ν − 1

z
− 1

)

.

Thus,

zν−1e−z d

dz

(

z1−νez (Jν−1(z)− Jν(z))
)

= Jν(z)
(2ν − 2z − 1)

z
. (19)

This last equation, together with the fact that λ−ν−1,1 > ν, imply that between two consecutive
zeroes of Jν−1(z)− Jν(z) there is, at least, one zero of Jν(z).

Altogether, there is a unique zero of Jν−1(z)− Jν(z) between two consecutive positive zeroes
of Jν(z) and v.v.

Proof of 3:

In order to prove that between two consecutive positive zeroes of Jν−1(z), there exists exactly
one zero of Jν−1(z)− Jν(z) and v.v. one has to use equation (14), which can be rewritten as

Jν−1(z)− Jν(z) = zν−1e−z d

dz

(

z1−νezJν−1(z)
)

.

Also, from equations (11) and (12),

z−νez
d

dz

(

zνe−z (Jν−1(z)− Jν(z))
)

= Jν−1(z)
(2ν − 2z − 1)

z
. (20)

The proof is now analog to the latter one.

Proof of 4:

In the interval [jν−1,k, jν,k] the functions Jν−1(z) and Jν(z) have opposite signs. This, to-
gether with the fact that jν−1,k 6= jν,k, imply that Jν−1(z)− Jν(z) is either positive or negative,
but never zero ∀z/jν−1,k ≤ z ≤ jν,k.

Combining now what we have found in items 1, 2 and 3, it follows that the zero of Jν−1(z)−
Jν(z) between two consecutive positive zeroes of Jν(z), and the zero of Jν−1(z)− Jν(z) between
two consecutive positive zeroes of Jν−1(z) coincide, and it lies in the interval (jν,k, jν−1,k+1).
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Proof of 5:

As already said, for z 6= 0 in a neighborhood of z = 0, Jν > 0, Jν−1(z) − Jν(z) > 0 and
J ′
ν > 0. From item 1, λ−ν−1,1 > ν > ν − 1. Moreover, from equation (14), Jν−1(z) − Jν(z) >

0 ∀z ∈ [ν − 1, j′ν−1,1]. So, j′ν−1,1 < λ−ν−1,1. Now, evaluating the right hand side of (14) at
z = jν−1,1, it is easy to see that Jν−1(jν−1,1) − Jν(jν−1,1) < 0, which shows that there is at
least one zero in the interval j′ν−1,1 < z < jν−1,1. From item 3, there is only one zero of
Jν−1(z)− Jν(z) in the same interval, and we get (15).

Now, evaluating the right hand side of equation (13) at j′ν,1, we see that λ−ν−1,1 < j′ν,1 and a
well-known property [2] leads to (16).

Proof of 6:

Once more, from equation (14), we study the behavior of Jν−1(z)− Jν(z), this time between
jν−1,k and jν−1,k+1. For definiteness, we first suppose that Jν−1(z) > 0 in the open interval.

Then, in a neighborhood of jν−1,k, J
′
ν−1(z) > 0. Moreover, z−(ν−1)

z
> 0, since k ≥ 1 and

jν−1,1 > ν − 1 [2]. So, the second term in (14) is always positive. As for the first term, for
jν−1,k < z < j′ν−1,k+1 it is also positive, since J ′

ν−1(z) > 0. As a consequence, Jν−1(z) − Jν(z)
remains positive till the zero of the derivative is surpassed and, so, there are no zeroes in this
interval.

Now, for j′ν−1,k+1 < z < jν−1,k+1, the second term in (14) is still positive, but the first one
is negative and decreases monotonically. Moreover, Jν−1(jν−1,k+1)− Jν(jν−1,k+1) < 0. By item
3, there is exactly one root of the difference between jν−1,k and jν−1,k+1, and it is such that
jν−1,k < j′ν−1,k+1 < λ−ν−1,k+1 < jν−1,k+1, as stated in equation (17). It is easy to check that the
same conclusion is reached by supposing Jν−1(z) < 0 in the open interval.

Finally, a similar analysis of the signs of Jν−1(z) − Jν(z) from equation (13) leads to the
result in (18).

�

Corollary 3.2. λ−ν,k+1 < λ−ν−1,k+2 < λ−ν,k+2.

Proof: Changing ν → ν + 1 in (17), one obtains

jν,k < j′ν,k+1 < λ−ν,k+1 < jν,k+1 .

Replacing into (18) and, then, using (17) again, this time with k → k + 1, the interlacing
of the roots of Jν−1(z)− Jν(z) is proved.

�
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4 Position of the positive zeroes of Jν−1(z) + Jν(z)

Throughout this section, jν,k is the k-th positive zero of Jν(z), j
′
ν,k is the k-th positive zero of

J ′
ν(z), λ

+
ν−1,k is the k-th positive zero of Jν−1(z) + Jν(z), where ν ∈ R, ν ≥ 1 and k ∈ N \ {0}.

Most of our results below arise from a detailed consideration of the well-known relations [2],
valid for z > 0,

Jν−1(z) + Jν(z) = J ′
ν(z) +

ν + z

z
Jν(z) , (21)

Jν−1(z) + Jν(z) = −J ′
ν−1(z) +

z + (ν − 1)

z
Jν−1(z) . (22)

Theorem 4.1.

1. There is no positive zero of Jν−1(z) + Jν(z) in the interval 0 < z ≤ jν−1,1 .

2. Between two consecutive positive zeroes of Jν(z), there exists exactly one zero of Jν−1(z)+
Jν(z) and v.v.

3. Between two consecutive positive zeroes of Jν−1(z), there exists exactly one zero of Jν−1(z)+
Jν(z) and v.v.

4. There is exactly one positive zero λ+ν−1,1 between z = 0 and z = jν,1, and it satisfies

j′ν,1 < λ+ν−1,1 < jν,1 (23)

5. There is no zero of Jν−1(z) + Jν(z) in the interval [jν,k, jν−1,k+1]

6. ∀k ≥ 1

jν,k < j′ν,k+1 < λ+ν−1,k+1 < jν,k+1 (24)

jν−1,k+1 < λ+ν−1,k+1 < j′ν−1,k+2 < jν−1,k+2 (25)

Proof of 1:
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In the interval (0, jν−1,1) both Jν−1 and Jν are positive. Indeed, as already noted at the be-
ginning of Theorem 3.1, they are both positive in a neighborhood of the origin, as long as z 6= 0;
moreover, the first zero of Jν is bigger than jν−1,1 [2]. So the statement is proved.

Proof of 2:

Equation (21) can be rewritten as

Jν−1(z) + Jν(z) = z−νe−z d

dz
(zνezJν(z)) .

Thus, between two consecutive positive zeroes of Jν(z) there is, at least, one zero of Jν−1(z)+
Jν(z).

Now, from equations (11) and (12),

zν−1ez
d

dz

(

z1−νe−z (Jν−1(z) + Jν(z))
)

= −Jν(z)
(2ν + 2z − 1)

z
. (26)

This last equation, together with the fact that 2ν + 2z − 1 > 0 ∀ν ≥ 1, imply that between
two consecutive zeroes of Jν−1(z) + Jν(z) there is, at least, one zero of Jν(z).

Altogether, there is a unique zero of Jν−1(z) + Jν(z) between two consecutive positive zeroes
of Jν(z) and v.v.

Proof of 3:

In order to prove that between two consecutive positive zeroes of Jν−1(z), there exists exactly
one zero of Jν−1(z) + Jν(z) and v.v. one has to use equation (22), which can be rewritten as

Jν−1(z) + Jν(z) = −zν−1ez
d

dz

(

z1−νe−zJν−1(z)
)

.

Also, from equations (11) and (12),

z−νe−z d

dz
(zνez (Jν−1(z) + Jν(z))) = Jν−1(z)

(2ν + 2z − 1)

z
. (27)

The proof is now analog to the latter one.

Proof of 4:

As already said, for z 6= 0 in a neighborhood of z = 0, Jν > 0, Jν−1(z) + Jν(z) > 0 and
J ′
ν > 0. From the r.h.s. of equation (21), Jν−1(z) + Jν(z) > 0 ∀z ∈ (0, j′ν,1].
Now, evaluating the right hand side of (21) at z = jν,1, it is easy to see that Jν−1(jν,1) +

Jν(jν,1) < 0, which shows that there is at least one zero in the interval j′ν,1 < z < jν,1. From
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item 2, there is only one zero of Jν−1(z) + Jν(z) in the same interval, and we get (23).

Proof of 5:

In the interval (jν,k, jν−1,k+1) the functions Jν−1(z) and Jν(z) have the same sign. This,
together with the fact that jν−1,k+1 6= jν,k, imply that Jν−1(z) + Jν(z) is either positive or
negative, but never zero ∀z/jν,k ≤ z ≤ jν−1,k+1.

Combining now what we have found in items 1, 2, 3 and 4, it follows that the zero of
Jν−1(z)+Jν(z) between jν−1,k+1 and jν−1,k+2 (λ

+
ν−1,k+1) is the same as the zero of Jν−1(z)+Jν(z)

between jν,k and jν,k+1, and it lies in the interval (jν−1,k+1, jν,k+1).

Proof of 6:

Once more, from equation (22), we study the behavior of Jν−1(z) + Jν(z), this time between
jν−1,k+1 and jν−1,k+2. For definiteness, we first suppose that Jν−1(z) > 0 in the open interval.

Then, in a neighborhood of jν−1,k+1, J
′
ν−1(z) > 0. Moreover, z+(ν−1)

z
> 0. So, the second term

in the r.h.s of (22) is always positive. As for the first term, for j′ν−1,k+2 < z < jν−1,k+2 it is also
positive, since J ′

ν−1(z) < 0. As a consequence, Jν−1(z) + Jν(z) remains positive in this interval
and, so, there are no zeroes here.

Now, for jν−1,k+1 < z < j′ν−1,k+2, the second term in the r.h.s. of (22) is still positive, but
the first one is negative . Moreover, Jν−1(jν−1,k+1) + Jν(jν−1,k+1) < 0. By item 3, there is
exactly one root of the difference between jν−1,k+1 and jν−1,k+2, and it is such that jν−1,k+1 <
λ+ν−1,k+1 < j′ν−1,k+2 < jν−1,k+2, as stated in equation (25). It is easy to check that the same
conclusion is reached by supposing Jν−1(z) < 0 in the open interval.

Finally, a similar analysis of the signs of Jν−1(z) + Jν(z) from equation (21) leads to the
result in (24).

�

Corollary 4.2.

λ+ν−1,k+1 < λ+ν−2,k+2 < λ+ν−1,k+2 . (28)

Proof:

This follows immediately, by combining (24) with (25) and iterating.

�
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Corollary 4.3.

jν,k < λ−ν−1,k+1 < j′ν,k+1 < λ+ν−1,k+1 < jν,k+1 (29)

Proof:

This follows immediately, by combining (18) with (24).

�

Corollary 4.4. Between two consecutive zeros of Jν−1(z)−Jν(z) there is one zero of Jν−1(z)+
Jν(z) and v.v.

Proof:

Immediate, by iterating (29).

�

Corollary 4.5.

jν−1,k < λ+ν−1,k < j′ν−1,k+1 < λ−ν−1,k+1 < jν−1,k+1 (30)

Proof:

This follows immediately, by combining (17) with (25).

�
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Corollary 4.6. The zeroes of the derivatives of Bessel functions of the first kind are interlaced
according to

j′ν,k+1 < j′ν−1,k+2 < j′ν,k+2

Proof:

Immediate, combining (29) and (30).

�

5 Mean charge

In order to obtain the zero temperature mean charge in the presence of a gate potential (chemical
potential) µ in a field-theoretical approach, one needs the Green function, G, of the Dirac
operator in equation (1), with its temporal derivative shifted by −iµ. To this end, as in [28],
we will first determine the Green function G of the auxiliary operator D = γ0 /D. Now, it is easy
to show that G = Gγ0. In turn, G is given by

G(x, x′) =
∑

q,α

∫

dk0
ψq(~x)e

−ik0x
0

⊗ ψ†
q(~x

′)eik0x
′0

k0 + µ+ αEq

, (31)

where α = ±1 is defined as in Section 2, ψq(~x) are the eigenfunctions (9) corresponding to
|E| = Eq/vF , and q labels the order in which the eigenvalues in equation (8) appear as the
absolute value of the energy grows.

As is well-known [30], we can express the local mean number of charge carriers, n(µ, x), as

n(µ, x) = −i tr(γ0G(x, x)) = −i tr(G(x, x)) . (32)

By using (9) and (31) we obtain from (32) the mean number of charge carriers in the quantum
nanodot as

n(µ) ≡

∫ R

0

rdr

∫ 2π

0

dθ n(µ, x) = −i
∑

α,q

∫ ∞

−∞

dk0
2π

1

k0 + µ+ αEq

= −i
∑

q

∫ ∞

−∞

dk0
2π

2(k0 + µ)

(k0 + µ)2 −Eq
2 . (33)
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This last expression obviously needs an ultraviolet regularization. As in [28], we will follow
the lines of [30]. In the first place we shift, in the denominator, k0 → k0 + iǫ sgn(k0), which
corresponds to the Feynman prescription for treating the poles on the real axes in the integral
(33). Thus, we get

n(µ) = −i
∑

q

∫ ∞

−∞

dk0
2π

2(k0 + µ)

(k0 + iǫ sgn(k0) + µ)2 − Eq
2 .

Now, we change the integration variable to t = k0 + µ to get

n(µ) = −i
∑

q

∫ ∞

−∞

dt

2π

2t

(t + iǫ sgn(t− µ))2 −Eq
2 ,

or, equivalently,

n(µ) = −
i

2

∑

q

{
∫ ∞

−∞

dt

2π

2t

(t+ iǫ sgn(t− µ))2 − Eq
2 −

∫ ∞

−∞

dt

2π

2t

(t + iǫ sgn(t + µ))2 −Eq
2

}

,

which leads to

n(µ) =
1

π

∑

q

∫ ∞

−∞

dt
t2ǫ [sgn(t + µ)− sgn(t− µ)]

[

(t + iǫ sgn(t− µ))2 − Eq
2
] [

(t + iǫ sgn(t + µ))2 −Eq
2
]

=
2

π

∑

q

∫ |µ|

−|µ|

dt
ǫ t2

[

(t + iǫ sgn(t− µ))2 − Eq
2
] [

(t + iǫ sgn(t + µ))2 − Eq
2
] .

Now, rewriting the integrand in terms of simple fractions and using that, for ǫ→ 0+,
1

x±iǫ
= PV

(

1
x

)

∓ iπδ(x), we obtain, for one valley and one spin value,

n(µ) = sgn(µ)
∑

q

Θ(|µ| − |Eq|) . (34)

This result was to be expected, since the manifold we are studying is compact, and so, the
spectrum (equation (8)) is discrete. Equation (34) thus confirms that for electrons (holes),
every filled state contributes with 1 (−1) to the mean number.

Though the actual determination of the precise values of the gate potential at which the
jumps occur for a graphene disk requires a numerical evaluation, the mathematical results
obtained in the two previous sections put a bound on the number of equations to be considered
in the system (7) once a given range of µ is selected.
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Note that our results in the two previous sections also guarantee that, for a finite range
of variation of the gate potential, n(µ) will show a finite number of jumps, all of them of the
same height, since the spectrum is non-degenerate. In fact, this follows immediately from the
interlacing with the zeroes of the Bessel functions, whose multiplicity is one.

Here, we remind the reader that the mean charge of a given nanodot is the product of
n(µ) with the charge of the electron. On the right-hand side of equation (34) we recognize the
counting function for positive eigenvalues, N(µ) =

∑

q Θ(|µ| − |Eq|). Applying the results of
[11], one can show that its asymptotics for a smoothed staircase is given by

〈N(µ)〉≃
A(µ/vF )

2

4π
+ . . . (35)

where A = πR2 is the area of the quantum dot. Note that this smoothening is the result of a
semiclasssical approximation with a continous spectrum at zero temperature, see [11],[12].

The behavior of the number of charge carriers for a quantum dot with radius R = 100nm,
as a function of µ, is shown in Figure 1 (red solid line) along with the smoothed approximate
expression (blue dashed line) given by (35). Note that our results in sections 3 and 4 guarantee
that no other jumps occur within the interval considered. The results in the same sections also
show that the gap ∆ is given by

∆ = 2
~cvF
R

λ−0,1 ≈ 2.8
~cvF
R

.

which for R = 100nm gives ∆ ≈ 18.4meV. We reestablished here ~ and c for a better comparison
with experimental results. This result is in qualitative agreement with both experimental and
theoretical research [31, 32, 29].

The distances between consecutive eigenvalues Eq, (equivalently, the length of the steps in
n(µ)) are related to the width of the Coulomb diamonds in transport measurements performed
on nanodots. We have checked that the statistical distribution for these distances, calculated
from the first 2496 energy levels, nicely fits a Poissonian distribution [11]. As shown in [29], such
distribution also fits the experimental results for nanodots of intermediate size. Unfortunately,
current experiments have not yet performed a comparison of the steps themselves, which have
a unique sequencing pattern along the whole range of variation of µ. Such comparison would
be crucial for determining the viability of this model as a description of graphene quantum
dots, and would also help explaining some experimental features, which depend on the actual
number of charge carriers in a quantum dot [31].

The finite-temperature mean number can be obtained by performing a Wick rotation to Eu-
clidean space-time and replacing the integral over k0 in equation (33) by a sum over Matsubara

frequencies (2l+1)π
β

, where (again in natural units) β = 1
T
, with T being the temperature. The

result of a direct calculation is

n(µ) = sgn(µ)
∑

q

[

(

1 + e(|Eq |−|µ|)β
)−1

−
(

1 + e(|Eq|+|µ|)β
)−1

]

. (36)
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∆ 2

Figure 1: The number of charge carriers (solid red line) for a single fermion species as a
function of the chemical potential µ[meV] (positive/negative values correspond to the number
of electrons/holes) for a dot of radius R = 100nm. The blue dashed line is the smoothed
expression 〈N〉 in equation (35).

This result is the one expected from the Fermi-Dirac distribution. It reduces to our expres-
sion in equation (34) in the zero-temperature (β → ∞) limit. As the temperature grows, the
steps become increasingly smoother.

6 Some comments and remarks

From a mathematical point of view, the main results of this article are contained in theorems
3.1 and 4.1 and their corollaries. Altogether, we have established the precise positions of zeroes
of sums and differences of Bessel functions of the first kind of orders differing by one, for real
nonnegative orders, as well as their interlacing among themselves and with the zeroes of Bessel
functions of the same kind and of their derivatives. As a byproduct we also got a new proof
of the interlacing of the zeroes of the derivatives of Bessel functions of the first kind. Other
proofs of this property were presented quite recently in [7, 8, 9]. Our physical problem involves
only Bessel functions of integer orders; however, our results are more general and hold for all
real non–negative orders. Note that some of these results could also have been obtained, in a
different approach, by making use of the results given in Lemma 4 of reference [9]. For instance,
once item 2 in Theorem 3.1 has been proved, the result in item 3 of the same theorem can be
shown to hold from the transitivity property in such lemma.

As a physical motivation for our mathematical problem, we presented the spectrum of
graphene nanodots with the geometry of a disk, and calculated their mean charge and its
dependence on the external gate voltage (chemical potential). Such dependence was determined
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in Section 5, and made visible in figure 1. Though the actual determination of the precise
values of the gate potential at which such jumps occur requires a numerical evaluation, the
mathematical results detailed in the previous paragraph put a bound on the number of equations
to be considered in the system (7) once a given range of µ is selected. Note that, as is to be
expected for a finite sample, the quantum conductance of a graphene disk (e2 ∂n

∂µ
) presents

successive peaks, appearing each time the gate voltage goes through an allowed energy value.
Such peaks are not equally spaced for our geometry and boundary conditions. The experimental
study of graphene nanodots is still at a very preliminary stage and concerns mainly transport
properties [18], but some indications in favour of the model considered here are already evident
[29].

In the case of Berry–Mondragon boundary conditions one thing is for sure: no radial current
is allowed to enter or leave the dot. The same is true of any local boundary condition leading
to a self adjoint Hamiltonian, the zig-zag boundary condition among others [14]. However,
the existence of a tangential current, forbidden in the zig-zag case, is not forbidden by Berry-
Mondragon boundary conditions. Its properties and relevance for electronic devices constitute
a subject worth exploring.

Finally, it is worth mentioning that, as noted in reference [33], our theorems are also useful
when studying field theories in higher-dimensional bounded regions with cylindrical symmetry.
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