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a b s t r a c t

In this paper, we characterize the equistable graphs within the class of EPT graphs, the
edge-intersection graphs of paths in a tree. This result generalizes a previously known
characterization of equistable line graphs. Our approach is based on the combinatorial
features of triangle graphs and general partition graphs. We also show that, in EPT graphs,
testing whether a given clique is strong is co-NP-complete. We obtain this hardness result
by first showing hardness of the problem of determining whether a given graph has a
maximal matching disjoint from a given edge cut. As a positive result, we prove that the
problem of testing whether a given clique is strong is polynomial in the class of local EPT
graphs, which are defined as the edge intersection graphs of paths in a star and are known
to coincide with the line graphs of multigraphs.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

We consider finite simple undirected graphs. A graph G = (V , E) is threshold if there exists a weight functionw : V → N
and a threshold t ∈ N, such that a subset S ⊆ V is a stable set of G if and only if


v∈S w(v) ≤ t [8] (a stable set in a graph

is a subset of pairwise non-adjacent vertices). In 1980, Payan introduced equistable graphs as a generalization of threshold
graphs: A graph G = (V , E) is called equistable if and only if there exists a positive integer t and an equistable weight function,
that is, a weight function w : V → N on the vertices of G such that a subset S ⊆ V is an (inclusion-wise) maximal stable set
of G if and only if


v∈S w(v) = t [34].

Let us illustrate the definition with two examples. Consider the 4-vertex path, P4, with vertex set V = {v1, v2, v3, v4}

and edge set {vivi+1 | 1 ≤ i ≤ 3}. Since the sets {v1, v4}, {v1, v3}, and {v2, v4} are all maximal stable sets of the P4, any
equistable weight function w : V → N of the P4 has to satisfy w(v1) + w(v4) = w(v1) + w(v3) = w(v2) + w(v4) = t (for
some threshold t), which implies the equationw(v2)+w(v3) = t , meaning that the non-stable set {v2, v3} of the P4 has the
same weight as the maximal stable sets. It follows that the P4 is not equistable. On the other hand, extending the P4 to the
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bull graph, that is, adding a new vertex, say v5, and making it adjacent to precisely the two midpoints of the P4, results in an
equistable graph. An equistable weight function of the bull graph is given for example by w(v1) = 2, w(v2) = 3, w(v3) =

5, w(v4) = 4, w(v5) = 1 (the corresponding threshold is t = 7).
Equistable graphs were studied in a series of papers [7,20,22–25,27,29–31,34,35]. However, while threshold graphs

are well understood, admit several characterizations, efficient recognition algorithms, and efficient algorithms for many
optimization problems [26], this is not the case for equistable graphs:

• The set of equistable graphs is not closed under vertex deletion (as shown by the above example).
• Verifying whether a given weight function on the vertices of a graph G is an equistable weight function of G is co-NP-

complete [30].
• Finding the maximum cardinality of a stable set or the minimum cardinality of a maximal stable set in an equistable

graph is APX-hard [30].
• The complexity status of recognizing equistable graphs is open.
• No characterization of equistable graphs in terms of their combinatorial properties is known.

The only positive known algorithmic result related to the recognition of general equistable graphs is the result of Levit
et al. [25] stating that it can be verified in polynomial time if a given graph admits an equistableweight functionwithweights
bounded by a fixed positive integer. (This was recently improved to an FPT algorithm [20].) An application of equistable
graphs in parallel computing was given by Korach et al. [23].

In [27], Mahadev et al. introduced a subclass of equistable graphs, the so-called strongly equistable graphs. For a graph G,
we denote by S(G) the set of all maximal stable sets of G, and by T (G) the set of all other nonempty subsets of V (G). A graph
G = (V , E) is said to be strongly equistable if for each T ∈ T (G) and each γ ≤ 1 there exists a weight function w : V → R+

such thatw(S) = 1forallS ∈ S(G), andw(T ) ≠ γ . Mahadev et al. showed that every strongly equistable graph is equistable,
and conjectured that the converse assertion is valid. The conjecture is known to hold for a class of graphs containing all
perfect graphs [27], for series–parallel graphs [22], for line graphs [24], for AT-free graphs [29], and for various product
graphs [29]. However, a counterexample to the conjecture of Mahadev et al. was recently found in [31] in the class of the
complements of the line graphs of triangle-free graphs (see Fig. 1).

Although no characterizations of equistable graphs in terms of their combinatorial properties are known, there are some
necessary and some sufficient conditions of combinatorial flavor for a graph to be equistable. Following [33], we say that a
graph is a triangle graph if it satisfies the following.
Triangle condition. For every maximal stable set S in G = (V , E) and every edge uv in G − S there is a vertex s ∈ S such
that {u, v, s} induces a triangle in G.

The triangle conditionwas introduced byMcAvaney et al. in [28], who proved that all general partition graphs (see below)
satisfy the condition. In the equistable graphs literature, a condition equivalent to the triangle condition was also used,
expressed in terms of induced 4-vertex paths and maximal stable sets. We say that an induced 4-vertex path P4(a, b, c, d)
in a graph G is bad if there exists a maximal stable set S in G containing a and d such that no vertex from S is adjacent both
to b and c. Mahadev et al. [27] proved that if G is equistable, then G contains no bad P4. Equivalently, every equistable graph
is a triangle graph [29]. The converse inclusion does not hold; not every triangle graph is equistable. Examples of triangle
non-equistable graphs can be found in [6,29]; see also Fig. 1.

Another combinatorially defined graph class related to equistable graphs is the class of general partition graphs. A graph
G = (V , E) is a general partition graph if there exists a set U and an assignment of non-empty subsets Ux ⊆ U to the vertices
of G such that two vertices x and y are adjacent if and only if Ux ∩ Uy ≠ ∅, and for every maximal stable set S of G, the set
{Ux : x ∈ S} is a partition of U . General partition graphs arise in the geometric setting of lattice polygon triangulations [12]
and were studied in a series of papers [2,9–11,21,41].

A strong clique in a graph G is a clique (that is, a set of pairwise adjacent vertices) that intersects all maximal stable
sets. McAvaney, Robertson and DeTemple proved in [28] that a graph G is general partition if and only if every edge of G
is contained in a strong clique. This result together with results from [27,29] implies that every general partition graph is
strongly equistable.

The above mentioned graph classes are related as follows:

general partition graphs ⊂ strongly equistable graphs ⊂ equistable graphs ⊂ triangle graphs. (1)

Some examples of graphs showing that the three inclusions are strict are depicted in Fig. 1.
For some graph classesC some (or all) of the above inclusions become equalities. Typically, such an equivalency is proved

by showing that every triangle graph in C is a general partition graph. This approach exploits the combinatorial features of
triangle graphs and of general partition graphs (instead of the more algebraically-flavored defining properties of equistable
and strongly equistable graphs). Clearly, whenever the triangle graphs coincide with the general partition graphs within a
class C, we obtain as a corollary also the equality of strongly equistable and equistable graphs within C. This is the case
when C is any of the following graph classes: chordal graphs [35], series–parallel graphs [22], line graphs [24], simplicial
graphs [24], very well-covered graphs [24], AT-free graphs [29], nontrivial Cartesian products of graphs [29], nontrivial
deleted lexicographic products of graphs where the base is a triangle-free graph [29], and complements of line graphs of
forests [6]. Moreover, the first two inclusions in (1) are equalities for complements of line graphs of bipartite graphs [6],
and the last inclusion is an equality for distance-hereditary graphs [23].
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Fig. 1. F1: A 11-vertex, 22-edge graph such that the complement of its line graph is strongly equistable but not general partition (see [31], where the
example is also generalized to an infinite family). F2: A 9-vertex, 14-edge graph such that the complement of its line graph is equistable but not strongly
equistable (see [31]); its line graph is also shown. F3 , F4 , F5: three graphs such that the complements of their line graphs are triangle but not equistable
(see [6,29], where F3 and F4 are also generalized to infinite families).

Since interval graphs are chordal, the results of [35] imply that within the class of interval graphs, all the three inclusions
in (1) are equalities. Furthermore, the results of [24] imply the same conclusion for the class of line graphs of multigraphs.
This motivates the study of the properties in the inclusion chain (1) for the class of EPT graphs, a common generalization of
interval graphs and of line graphs of multigraphs. EPT graphs were introduced by Golumbic and Jamison [15] as the edge
intersection graphs of undirected paths in an undirected tree. Note that interval graphs are exactly the edge intersection
graphs of subpaths of a path. Moreover, line graphs of multigraphs were proved to exactly coincide with the so-called local
EPT graphs, the edge intersection graphs of undirected paths in a star. (See Section 4.2 for further details, including the
definition of line graphs of multigraphs.) Golumbic and Jamison showed that recognizing EPT graphs is NP-complete [16].
EPT graphs were studied in a series of papers [1,3–5,17,18,32,37,38].

Our results can be summarized as follows:
In Section 2, we show two simple properties of cliques in EPT graphs.
In Section 3, we show that within EPT graphs, all the four classes of graphs appearing in chain of inclusions (1) coincide.

This implies several equivalent characterizations of equistable EPT graphs.
In Section 4, we discuss some algorithmic and complexity issues related to the problem of recognizing EPT equistable

graphs. Using the results from Section 3, the problem is reduced to testing whether a given clique in an EPT graph is strong.
We prove that this problem is co-NP-complete, thus leaving open the complexity status of determining if a given EPT graph
is equistable. As a positive result, we show that the problem of testing whether a given clique is strong is polynomial time
solvable in the subclass of local EPT graphs. As a corollary, the problem of testing whether a given clique is strong is also
polynomial in the class of line graphs of multigraphs.

As a byproduct, we prove that the problem of deciding if a given graph has amaximalmatching such that each of its edges
has either both or none of its endpoints in a given subset of vertices, is NP-complete even for bipartite graphs of maximum
degree at most 5.

We use standard graph theoretic terminology, see, e.g., [13].

2. Properties of cliques in EPT graphs

In this section we derive two simple properties of cliques in EPT graphs which will be needed later.
We start with some formal definitions related to EPT graphs. Let P be a multiset of nontrivial simple paths in a host tree

T . The edge intersection graph EPT(T , P ) is the graph whose vertex set is P , and two paths are adjacent in EPT(T , P ) if and
only if they share at least one common edge. An undirected graph G is called an edge intersection graph of paths in a tree, or
an EPT graph, if G ∼= EPT(T , P ) for some pair (T , P ), where ∼= denotes the graph isomorphism relation. In this case we also
refer to (T , P ) as an EPT representation of G. In what followswe denote the vertices of G also by lowercase letters u, v, u1, v1,
etc.; and, given a vertex v, denote by Pv the path in P representing v. Let G = EPT(T , P ). For an edge e ∈ E(T ), let Ke be the
subset of V (G) defined by

Ke = {v ∈ V (G) : e ∈ E(Pv)};
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Fig. 2. The 3-sun S3 .

and for a claw Y in T (that is, a subgraph of T induced by a vertex and 3 distinct neighbors of it), let KY be the subset of V (G)
defined by

KY = {v ∈ V (G) : |E(Pv) ∩ E(Y )| = 2}.
The vertex y of T incident with all edges in E(Y ) is also called the center of Y . Clearly, both Ke and KY induce cliques of G. The
following result is [16, Theorem 1.1]:

Theorem 1 (Golumbic and Jamison [16]). Let G = EPT(T , P ), and K be a clique in G. Then K ⊆ Ke for some edge e ∈ E(T ), or
K ⊆ KY for some claw Y in T .

The clique K in the above theorem is called an edge clique if K ⊆ Ke for some e ∈ E(T ), and a claw clique if this is not
the case. Notice that, for a claw Y in T , KY is a claw clique if and only if every pair of edges of Y is covered by some path Pv ,
v ∈ KY .

Given an EPT graph G and a clique K in G, one may ask whether there exists an EPT representation of G in which K is an
edge clique. In this context, we prove the following proposition. The 3-sun is the graph S3 depicted in Fig. 2.

Proposition 1. Let G be an EPT graph, let H be an induced subgraph of G isomorphic to S3, and let U be the set of all vertices of
H of degree 4 in H. Then, U is a claw clique in every EPT representation of G.

Proof. Assume for a contradiction that G ∼= EPT(T , P ) for some T and P such that U ⊆ Ke for some e ∈ E(T ). Let us write

U = {v12, v13, v23} and V (H)\U = {v1, v2, v3},

where vij ∈ U is adjacent to exactly vi and vj from V (H)\U (see Fig. 2).
None of the paths Pvi passes through edge e. Indeed, if we had, say, e ∈ E(Pv1), then e would be a common edge of Pv1

and Pv23 , contrary to the fact that v1 is not adjacent to v23 in G. It follows that at least two of the paths Pvi must belong to
the same connected component of the graph T − e. Without loss of generality wemay assume that Pv1 and Pv2 belong to the
same component. Now, let x1 be the vertex of V (Pv1) ∩ V (Pv12) closest to e, and x2 be the vertex of V (Pv2) ∩ V (Pv12) closest
to e. Using the fact that Pv1 and Pv2 are edge-disjoint, and Pv12 ∈ Ke, we see that x1 ≠ x2. Without loss of generality we may
assume that x1 is closer to e than x2. Since e ∈ E(Pv23) and the path Pv23 has an edge in common with Pv2 , Pv23 contains
the subpath of T connecting x2 and e. Consequently, Pv23 contains the (non-trivial) common subpath of Pv1 and Pv12 , which
implies that v23 is adjacent to v1 in G, a contradiction. �

Now, we turn to (inclusion-wise) maximal cliques. It can be easily seen that every claw clique is maximal, but this is not
always true for edge cliques, not even for the ones of the form Ke. This can happen for two reasons: either Ke ⊂ Kf for some
f ∈ E(T )\{e} or Ke ⊂ KY for some claw Y in T . The first possibility leads to the following definition.

Definition 1. A clique Ke of a graph EPT(T , P ) is edge-maximal if for every e′
∈ E(T ), Ke ⊆ Ke′ implies that e = e′.

Notice that the definition of edge-maximal clique depends on the given EPT representation of the graph. For example, if
G is the complete graph K3, then G can be represented either:
• with the host tree T being a 3-vertex path with vertices x, y, and z, and with P consisting of three paths each containing

the three vertices x, y, and z, or
• with the host tree T being the 4-vertex star with centerw and leaves x, y, and z, andP consisting of three paths (x, w, y),

(y, w, z), and (z, w, x).

In the former EPT representation, the two cliques Kxy and Kyz coincide, hence neither of them is edge-maximal; they are both
maximal inG. In the latter one, there are three cliques of the formKe, namelyKwx,Kwy, andKwz . Each of them is edge-maximal,
however none of them is maximal in G.

As the above example shows, there exist EPT representations with no edge-maximal cliques. However, any EPT graph
admits an EPT representation in which every clique Ke is edge-maximal (for instance, any representation using a host tree
with minimum number of edges). The above example also shows that there exist EPT representations in which every
clique Ke is edge-maximal but not maximal. However, as the next proposition shows, every edge-maximal clique that is
not maximal is (properly) contained in a claw clique (cf. the proof of Theorem 2).
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Proposition 2. Let G = EPT(T , P ) and e ∈ E(T ) such that Ke is edge-maximal but not maximal. Then Ke ⊂ KY for a claw clique
KY such that e ∈ E(Y ).

Proof. Let K be a maximal clique with Ke ⊂ K . By Theorem 1, either K = Ke′ for some edge e′
∈ E(T ) or K is a claw clique.

The first case is excluded since Ke is edge-maximal. Let Y be the claw in T such that the claw clique K = KY . We must show
that e ∈ E(Y ). Let us write E(Y ) = {e1, e2, e3}, and let y be the center of Y . Every path in Ke contains e, but also, being a
path of KY , includes y and hence also the whole path that goes from y to e (and including e as its last edge); we denote this
path by P∗. Since y is not an internal vertex of P∗, we see that P∗ contains exactly one of the edges in {e1, e2, e3}, say e1. We
conclude that Ke ⊆ Ke1 , and since Ke is edge-maximal, this implies that e = e1 ∈ E(Y ). �

3. Triangle EPT graphs are general partition graphs

In this section we prove our main result, which gives several equivalent characterizations of equistable EPT graphs.

Theorem 2. For every EPT graph G, the following conditions are equivalent.

(i) Every edge of G is contained in a strong clique.
(ii) G is general partition.
(iii) G is strongly equistable.
(iv) G is equistable.
(v) G is triangle.

Note that the equivalence (i) ⇔ (ii) as well as the chain of implications (ii) ⇒ (iii) ⇒ (iv) ⇒ (v) holds for all graphs
(not necessarily EPT). This follows from results in [27–29] (see the Introduction for more details). To show Theorem 2 it thus
suffices to prove that EPT graphs satisfy the implication (v) ⇒ (i). The proof of Theorem 2 will appear at the end of this
section and will be based on one lemma about triangle graphs, and three lemmas about triangle EPT graphs, to be proved
below. Our first lemma can be, in fact, deduced from the proof of [2, Theorem 1], but for completeness we add a proof here.

Lemma 1. Let G be a triangle graph, K a maximal clique of G that is not strong, and let S be a maximal stable set S such that
K ∩S = ∅. Then G contains an induced subgraph H isomorphic to the 3-sun S3 such that the set U of all vertices of H of degree 4 in
H satisfies U ⊆ K and V (H)\U ⊆ S.

Proof. Let v1 ∈ S be a vertex maximizing |N(v1) ∩ K |. By the triangle condition, this maximum is at least two. Since K is
maximal, there is a vertex in K that is not adjacent to v1. Let v23 denote such a vertex. The triangle condition implies that
for every edge uv23 ∈ E(G) with u ∈ K ∩ N(v1), there is a vertex v2 ∈ S adjacent to both u and v23. Choose a pair (u, v2)
as above so that |N(v1) ∩ N(v2) ∩ K | is maximized. By the choice of v1 and since v23 ∈ K ∩ (N(v2)\N(v1)), there exists a
vertex v13 ∈ K ∩ (N(v1)\N(v2)). By the triangle condition, there exists a vertex v3 ∈ S adjacent to both v13 and v23.

Since v13 ∈ N(v1) ∩ N(v3) ∩ K but v13 is not adjacent to v2, the choice of v2 implies that there exists a vertex
v12 ∈ N(v1) ∩ N(v2) ∩ K that is not adjacent to v3. But now, the vertex set {v1, v2, v3, v12, v13, v23} induces a desired
copy of S3 in G. �

Lemma 2. Let G = EPT(T , P ) be a triangle graph, and let e = xy ∈ E(T ) such that Ke is edge-maximal, and Ke ⊂ KY , where Y
is a claw in T with center y, and KY is a claw clique that is not strong. Then:

(i) There exist vertices v1, v2 ∈ Ke such that E(Pv1) ∩ E(Pv2) = {e}.
(ii) Ke = KX ∩ KY for some claw X in T with center x.
(iii) KX is a claw clique.

Proof. Let Ex ⊆ E(T ) be the set of edges incident with x but not with y, and let r denote the number of edges in Ex which are
covered by some path Pv, v ∈ Ke. Let {e1, . . . , er} be the set of edges in Ex covered by some path Pv , v ∈ Ke, and let f1 and f2
be the two edges of Y different from e.
Proof of (i). Property (i) holds even without the assumption that G satisfies the triangle property. As proved in [16, Theorem
1], a finite collection of closed intervals on a line has strongHelly number 2. Thismeans that, ifwe denote by I the intersection
of all intervals in the collection, then there exist two intervals in the collection, say I1 and I2, such that I1 ∩ I2 = I . We can
apply this observation as follows. Since Ke ⊂ KY , each path of Ke contains exactly one of f1 and f2. If r = 0, then we can
take any two vertices v1, v2 ∈ Ke such that fi ∈ E(Pvi) for i ∈ {1, 2}. Notice that such vertices do exist because KY is a claw
clique. Suppose now that r ≥ 1. Let P0 be the subpath of T formed by the edges e1, e and f1. Consider the subpaths P0 ∩ Pv

where v runs over the set Ke. This results in a collection of subpaths of P0, which can thus be seen as a collection of intervals.
Clearly, each of these subpaths covers e. Moreover, it can be shown using the edge-maximality of Ke that the intersection of
all intervals corresponds to the subpath induced by e.

By the above discussion, there exist distinct v1, v2 ∈ Ke such that E(Pv1 ∩ P0) ∩ E(Pv2 ∩ P0) = {e}. We claim that we may
also assume that f1 is covered by exactly one of the paths Pv1 and Pv2 .

Indeed, if this is not the case, we have E(Pv1) ∩ E(P0) = {e} and E(Pv2) ∩ E(P0) ∈ {{e}, {e, e1}}. Since EY is a claw clique
and Ke ⊂ KY , then there exists an element v ∈ Ke such that f1 ∈ E(Pv). Thus, we just replace v2 with v.
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Fig. 3. The claw Y with center y and paths Pv1 , Pv2 , Pw .

Fig. 4. The claw Y with center y and paths Pu1 , Pu2 , Pu3 .

Finally, we will show that we may also assume that e1 is covered by exactly one of the paths Pv1 and Pv2 .
Indeed, if this is not the case, we have E(Pv1) ∩ E(P0) = {e} and E(Pv2) ∩ E(P0) = {e, f1}. Since e1 ∈ Ex, there exists an

element w ∈ Ke such that e1 ∈ E(Pw). And, since Ke ⊂ KY , we have that f1 ∈ E(Pw) or f2 ∈ E(Pw). In the former case, we
replace v2 with w; and in the latter, we replace v1 with w. This completes the proof of (i).

Before proving (ii), we first show that

E(Pv) ∩ Ex ≠ ∅ for every v ∈ Ke. (2)

If not, then there is a vertex v1 ∈ Ke such that Pv1 ends at vertex x. Since Ke ⊂ KY , v1 ∈ KY also holds. Furthermore, since
KY is a claw clique, there exists a vertex v2 ∈ Ke such that E(Pv1) ∩ E(Y ) ≠ E(Pv2) ∩ E(Y ). Part of the paths Pv1 and Pv2 are
depicted in Fig. 3, where Pv2 possibly ends at vertex x.

Since KY is not strong, there is a maximal stable set S such that KY ∩ S = ∅. Applying the triangle condition to v1v2 and
S, we find a vertex w ∈ S which is adjacent to both v1 and v2. It follows that e ∈ E(Pw) or E(Y )\{e} ⊆ E(Pw) (in the latter
case Pw is shown in the picture). In either case we find that w ∈ KY (in the first case we use that Ke ⊆ KY ), contradicting
that KY ∩ S = ∅.

Proof of (ii). Recall that r denotes the number of edges in Ex which are covered by some path Pv, v ∈ Ke. It follows from (2)
that in order to finish the proof of part (ii) of the lemma it is sufficient to show that r = 2. Observe that r ≠ 1 because of (2)
and the fact that Ke is edge-maximal.

Suppose that r ≥ 3. Consider the bipartite graph B with parts {e1, . . . , er} and {f1, f2} in which ei is adjacent to fj if and
only if there exists a path Pv with v ∈ Ke and {ei, fj} ⊆ E(Pv). Since Ke ⊂ KY , every vertex ei is of degree at least 1 in B.
By (2), every vertex in {f1, f2} is of degree at least 1 in B. It follows that B has a matchingM of size 2. By adding toM one edge
incident with a vertex in {e1, . . . , er} not covered by the matching, we see that wemay assume that {e1f1, e2f1, e3f2} ⊆ E(B)
(by renaming the vertices of B if necessary). That is, ei ∈ E(Pui) for some ui ∈ Ke ⊂ KY , where Pu1 and Pu2 cover the same
two edges of Y (namely e and f1) whereas Pu3 bifurcates in y, see Fig. 4.

Now, apply the triangle condition to u1u3 and S. This results in a vertex w13 ∈ S, adjacent to both u1 and u3. It follows
that Pw13 cannot share any edge with Y , and therefore, {e1, e3} ⊆ E(Pw13) (see Fig. 4). By the same reason S has a vertex w23
which is adjacent to both u2 and u3, and also {e2, e3} ⊆ E(Pw23). These give, however, that e3 ∈ E(Pw13) ∩ E(Pw23), which,
since w13 ≠ w23, implies that w13 and w23 are adjacent, contradicting that both are from S.

Proof of (iii). In order to show that KX is a claw clique we have to find a path P ∈ P for which E(P) ∩ E(X) = {xx1, xx2}.
Recall that S is a maximal stable set such that S ∩ KY = ∅. Apply the triangle condition to the edge v1v2, where v1, v2
are as in (i), and the maximal stable set S. This results in a vertex w ∈ S adjacent to both v1 and v2. Since w ∉ KY and
E(Pv1) ∩ E(Pv2) = {e}, the path Pw will be a good choice for P . The lemma is proved. �

Lemma 3. Let G = EPT(T , P ) be a triangle graph, and let e = xy ∈ E(T ) such that Ke is edge-maximal, and Ke = KX ∩ KY ,
where X and Y are claws in T with center x and y respectively, and KX and KY are both claw cliques. Then KX or KY is strong.
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Fig. 5. The claws X, Y , and paths Pv1 , Pv2 , PwX , PwY .

Proof. Assume, towards a contradiction, that none of KX and KY is strong. In particular, Lemma 2 applies to G. Let v1 and v2
be the vertices in Ke described in Lemma 2(i). The claws X, Y together with the parts of the paths Pv1 and Pv2 are depicted
in Fig. 5.

Since KX and KY are not strong, there exist maximal stable sets SX and SY such that SX ∩ KX = SY ∩ KY = ∅. Let S ′

X ⊆ SX
be the set of those vertices v ∈ SX for which Pv lies entirely in the component of T − e containing x. Since v1, v2 ∈ KX , these
two vertices are not in SX , and we may apply the triangle condition to the edge v1v2 and SX . This gives a vertex wX ∈ SX ,
which is adjacent to both v1 and v2. It follows that wX ∈ KY\Ke, see Fig. 5. Let us repeat the above argument with the claw
clique KY . This gives rise to a subset S ′

Y ⊆ SY consisting of those vertices v ∈ SY for which Pv lies in the component of T − e
containing y, and to a vertex wY ∈ SY for which wY ∈ KX\Ke, see Fig. 5.

Let S be a maximal stable set of G which contains S ′

X ∪ S ′

Y . We claim that S contains a vertex t from Ke. This follows
immediately if one of v1 and v2 is in S, hence we may assume that {v1, v2} ∩ S = ∅. Then applying the triangle condition
to the edge v1v2 and the maximal stable set S, we find a vertex in S which is adjacent to both v1 and v2. Let t be such a
vertex. Clearly, t ∈ KX ∪ KY (see Fig. 5). Assume that t ∉ Ke. Since Ke = KX ∩ KY , we may assume that t ∈ KY\Ke (the other
possibility, that is, when t ∈ KX\Ke, can be treated in the same manner). This means that Pt lies entirely in the component
of T − e that contains y. Consequently, the set (SY\S ′

Y ) ∪ {t} is stable since SY ∩ KY = ∅. On the other hand, since S ′

Y ⊂ S
and t ∈ S, S ′

Y ∪ {t} is also stable, and we conclude that SY ∪ {t} is a stable set. This contradicts the fact that SY is a maximal
stable set, and therefore t ∈ Ke.

Since t ∈ Ke, t ∈ KY . Also, wX ∈ KY , and from this we can conclude that t and wX are adjacent, and none of them is in
SY . Applying the triangle condition to the edge twX and SY , we find a vertex s ∈ SY which is adjacent to both t and wX . Since
s ∈ SY , we have s ∉ KY , which implies s ∉ Ke, and so the path Ps lies entirely in one of the two components of T − e. Using
also that s is adjacent to wX ∈ KY , it can be seen that this will be the component that contains y, i.e., s ∈ S ′

Y . This gives that
s ∈ S, which, together with the facts that s is adjacent to t and t ∈ S, is in contradiction with the fact that S is a stable set.
The lemma is proved. �

Lemma 4. Let G = EPT(T , P ) be a triangle graph, and let e ∈ E(T ) such that Ke is edge-maximal. Then one of the following
holds.

(i) Ke is maximal, and it is strong.
(ii) Ke ⊂ KY for some strong claw clique KY such that e ∈ E(Y ).

Proof. Suppose first that Ke ismaximal. If Ke is not strong, then it follows from Lemma 1 thatG contains an induced subgraph
H isomorphic to S3 such that U ⊆ Ke where U is the set of all vertices of H of degree 4 in H . Thus U is an edge clique in G.
This is, however, impossible by Proposition 1. Therefore Ke is strong, and (i) follows.

Suppose next that Ke is not maximal. By Proposition 2, Ke ⊂ KY for a claw clique KY such that e ∈ E(Y ). Now, Lemmas 2
and 3 yield that, either KY is strong, or Ke = KX ∩ KY for a strong claw clique KX . In either case (ii) holds, and this completes
the proof of the lemma. �

Proof of Theorem 2. Recall that the chain of implications (i) ⇒ · · · ⇒ (v) holds for all graphs. To see that (v) implies (i),
let G be a triangle EPT graph. We choose among all possible EPT representations of G one using a host tree with minimum
number of edges, namely (T , P ). Thus, it is clear that if e ∈ E(T ), then Ke is edge-maximal. Let uv ∈ E(G) be an arbitrary
edge of G, and e′

∈ E(T ) be an edge common to the two paths Pu and Pv . By the previous remark Ke′ is edge-maximal, thus
Lemma 4 implies that either Ke′ is a strong clique (if it is maximal), or otherwise Ke′ is contained in a strong claw clique. In
either case, uv is contained in a strong clique of G (recall that u and v belong to Ke′ ). Since the choice of edge uv was arbitrary,
this proves the implication. �

4. Algorithmic and complexity issues

As stated in the Introduction, the complexity status of recognizing equistable graphs is open. It is therefore an interesting
question to determine the complexity status of the problem of determining whether a given EPT graph is equistable.
Recognizing EPT graphs was proved to be NP-complete by Golumbic and Jamison [16], therefore we assume that the graph
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is given by an EPT representation. The result in [30, Theorem 7] shows that the following problem is co-NP-complete: given
a graph G and a weight function w : V (G) → N on its vertices, is w an equistable weight function of G? The family of graphs
appearing in that hardness proof is extremely simple: it consists of the graphs consisting of disjoint edges (that is, nK2 for
n ≥ 1). Since these graphs are EPT, this immediately implies that the following problem is co-NP-complete: given an EPT
representation of a graph G, and a weight function w : V (G) → N on its vertices, is w an equistable weight function of G? This
result seems to indicate that any potential polynomial recognition algorithm for equistable EPT graphs would have to rely
on the structural properties of equistable graphs, as even the ‘correctness’ of equistable weight functions is hard to verify.

By Theorem 2, a given EPT graph is equistable if and only if every edge of it is contained in a strong clique. Since EPT
graphs have only polynomially many maximal cliques (cf. Theorem 1), this suggests that in order to test whether an EPT
graph G given by an EPT representation is equistable, one could enumerate (in polynomial time) all the maximal cliques
of G, test for each of them whether it is strong, and check whether the strong cliques cover all edges. Thus, the problem is
reduced to testing whether a given clique in an EPT graph is strong. Formally, the decision problem of testing whether a
given clique in a graph is strong can be stated as follows:

Strong Clique
Input: A graph G and a clique K in G.

Question: Is K strong?

For general graphs, Zang proved that the Strong Clique problem is co-NP-complete [40]. (Also, we remark that a related
result that the problem of testing whether a graph contains a strong clique is NP-hard [19].) We show in this section that,
unfortunately, the problem of testing whether a given clique is strong remains co-NP-complete also for EPT graphs, thus
leaving open the complexity status of determining if a given EPT graph is equistable (equivalently: general partition/strongly
equistable/triangle).

The decision problem of testing whether a clique in an EPT graph is strong can be formally stated as follows:

Strong EPT Clique
Input: An EPT representation (T , P ) of an EPT graph G, a clique K in G.

Question: Is K strong?

The Strong Edge Clique problem is the problem obtained from the Strong EPT Clique problem by imposing the
additional restriction on the clique K as being an edge clique of G. In Section 4.1 we prove that the Strong Edge Clique
problem is NP-complete even if the host tree T is of diameter 3. Consequently, the same is true for the Strong EPT Clique
problem. Then, in Section 4.2, we show that this result is sharp, in the sense that if T is of diameter at most 2, then the
problem can be solved in polynomial time.

4.1. Testing strong cliques in EPT graphs

Our hardness proof is done in two steps. First, we introduce and show hardness of a newmatching problem, the problem
of testing whether a given graph has a maximal matching disjoint from a given edge cut. Formally, given a graph G and a
subset X ⊆ V (G), we say that a matchingM in G is separated by X if every edge ofM is either contained in X or disjoint from
it.

Separated Maximal Matching
Input: A graph G and a subset of vertices X ⊆ V .

Question: Does G contain a maximal matching separated by X?

Theorem 3. The Separated Maximal Matching problem is NP-complete, even for bipartite graphs of maximum degree at
most 5.

Proof. The problem is clearly in NP, as testing whether a given matching is separated by X can be done in polynomial time.
The hardness reduction is from the 3-SAT problem in which every variable occurs four times, a problem showed NP-hard
by Tovey [39].

Assume given a 3-SAT formula F on variables x1, . . . , xn and clauses c1, . . . , cm in which each variable occurs four times.
For j = 1, . . . ,m, we denote by ℓj

1, ℓj
2 and ℓj

3 the three literals occurring in clause cj.
We build a bipartite graph GF = (A, B; E) as follows (see Fig. 6):

• A = {x1, . . . , xn} ∪
m

j=1{ℓj
1, ℓj

2, ℓj
3
} (disjoint union),

• B = ∪
n
i=1{xi

T , xiF } ∪ {c11, . . . , cm1
} ∪ {c12, . . . , cm2

} and
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Fig. 6. An example construction of the bipartite graph GF and its vertex subset X from a formula F . In the example, the formula has variables x1, x2, x3 and
clauses c1 = x1 ∨ x2 ∨ x3 , c2 = x1 ∨ x2 ∨ x3 , c3 = x1 ∨ x2 ∨ x3 , and c4 = x1 ∨ x2 ∨ x3 .

• E = E1 ∪ E2 with

E1 =

n
i=1

{xixiT , xixiF } ∪

m
j=1

{ℓj
1cj1, ℓj

2cj1, ℓj
3cj1, ℓj

1cj2, ℓj
2cj2, ℓj

3cj2}

depending only onm and nwhereas the instance specific part E2 is given by

E2 = {xiTℓj
p

: 1 ≤ i ≤ n, 1 ≤ j ≤ m, ℓj
p is the positive literal xi}

∪ {xiFℓj
p

: 1 ≤ i ≤ n, 1 ≤ j ≤ m, ℓj
p is the negative literal xi}.

Finally, we let X = ∪
n
i=1{xi, xi

T , xiF }.

Since every variable occurs in F four times, GF is of maximum degree at most 5. Clearly, the above transformation can be
carried out in polynomial time. The proof of the theorem will therefore follow from the two lemmas below.

Lemma 5. If F is satisfiable, then there exists a maximal matching M of G separated by X.

Proof. Let φ be a satisfying truth assignment for F . For every i = 1, . . . , n, put in M the edge xixiT if φ(xi) = true and
otherwise the edge xixiF if φ(xi) = false. For every j = 1, . . . ,m, let ℓj

p and ℓj
q be two literals of clause cj such that cj

evaluates to true under φ on the remaining literal. Then put inM the edges cj1ℓj
p and cj2ℓj

q. By construction,M is a matching
of G separated by X . Also, M is a maximal matching of G since G is bipartite and the only nodes left exposed by M in the A
color class of G are all nodes ℓj

r corresponding to literals evaluating to true under φ. These nodes have no exposed neighbor
in B since all nodes cj1 and cj2 are covered, as well as all the nodes of the form xiT such that φ(xi) = true and all the nodes of
the form xiF such that φ(xi) = false. �

Lemma 6. If there exists a maximal matching M of G separated by X, then F is satisfiable.

Proof. For every i = 1, . . . , n,M ∩{xixiT , xixiF } ≠ ∅ by the maximality ofM , by the fact that xi has degree only 2, and by the
fact that these two edges incident with xi are the only edges incident to xiT or xiF whichmay possibly belong toM as implied
by the fact that every edge of M is either contained in X or disjoint from it. This fact allows us to define a truth assignment
φ by setting φ(xi) = true if xixiT ∈ M and φ(xi) = false if xixiF ∈ M . The arguments in the above proof can now be reversed
to show that this φ is indeed a satisfying truth assignment. Indeed, for every j = 1, . . . ,m, let p ∈ {1, 2, 3} be such that
neither ℓj

pcj1 nor ℓj
pcj2 belongs to M . Such a p must exist since M is a matching. Then, since M is maximal, it must be the

case that the corresponding literal in F must evaluate to true. �

This completes the proof of Theorem 3. �

Theorem 4. The Strong Edge Clique problem is co-NP-complete, even if T is a tree of diameter 3.

Proof. The problem is in co-NP, since a maximal stable set S disjoint from a given edge clique K is a short certificate for the
fact that K is not strong.
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Fig. 7. An example construction of the instance (T , P , Ke) of the Strong Edge Clique problem from a bipartite graph G with a given vertex subset X . For
clarity, only two path names are displayed.

To showhardness,we reduce from the SeparatedMaximalMatchingproblem. Let (G, X)be an instance to the Separated
Maximal Matching problem where G is a graph, and X ⊆ V (G). We will now show how to construct, in polynomial time,
an instance (T , P , Ke) of the Strong Edge Clique problem such that G contains a maximal matching separated by X if and
only if the edge clique Ke is not strong in H = EPT(T , P ).

Let V = V (G) and Y = V\X .

• The tree T has V (G) ∪ {cX , cY } as vertex set, where cX and cY are two new vertices. The edge set of T is E(T ) = {vcX |

v ∈ X} ∪ {cXcY } ∪ {cYv | v ∈ Y } .

• The collection P of subpaths of T consists of the following paths:
– For every edge uv ∈ E(G) such that {u, v} ⊆ X or {u, v} ⊆ Y , add to P the length-two subpath in T connecting u and

v, denoted by Puv . (That is, E(Puv) = {ucX , cXv} if {u, v} ⊆ X , and E(Puv) = {ucY , cYv}, otherwise.) Such paths will be
referred to as internal paths, and edges of G generating them internal edges.

– For every edge uv ∈ E(G) such that u ∈ X and v ∈ Y , add to P the length-three subpath in T connecting u and v,
denoted again by Puv . (That is, E(Puv) = {ucX , cXcY , cYv}.) Such paths will be referred to as crossing paths, and edges
of G generating them crossing edges.

• Set Ke to be the edge clique corresponding to the edge e = cXcY of T .
• Set H = EPT(T , P ). For simplicity, we will identify the paths Puv with vertices of H in the rest of the proof.

An example construction is shown in Fig. 7.
Clearly, the above transformation can be carried out in polynomial time. Notice that the edge e = cXcY is dominating

in T , and that for every edge vw ∈ E(G), we have Puv ∈ Ke if and only if Puv is a crossing path. Moreover, the graph H is
isomorphic to the graph obtained from the line graph of G by turning the set of vertices corresponding to the crossing edges
into a clique. (For the definition of a line graph, we refer to Section 4.2.)

It remains to show that G contains a maximal matching separated by X if and only if the edge clique Ke is not strong in H .
Suppose first that G contains a maximal matching M separated by X . Let S denote the subcollection of P consisting of

all paths of the form Puv where uv ∈ M . Since every path corresponding to a vertex in Ke is a crossing path, while all paths
in S are internal, we have S ∩ Ke = ∅. We claim that S is a maximal stable set in H . Since M is a matching, S is a stable
set. Moreover, maximality of M implies maximality of S. Indeed, if S were not maximal, then there would exist an edge
uv ∈ E(G) such that path Puv was edge-disjoint from all paths in S, and nomatter whether uv is internal or crossing, it could
be added toM to obtain a bigger matching. Thus, S is a maximal stable set in H disjoint from Ke, and hence Ke is not strong.

Conversely, ifKe is not strong, then there exists a collection S of pairwise edge-disjoint internal paths that forms amaximal
stable set ofH . Reversing the above arguments, it can be seen that the set of edges uv of G such that Puv ∈ S forms amaximal
matching separated by X in G. This completes the proof. �

4.2. Testing strong cliques in local EPT graphs and in line graphs of multigraphs

In this section, we show that the result of Theorem 4 is sharp, in the sense that the Strong EPT Clique problem can
be solved in polynomial time on instances such that T is a tree of diameter at most 2. Such instances are easily seen to
be equivalent to the special class of EPT graphs known as local EPT graphs, defined in [16] as graphs having a local EPT
representation, that is, an EPT representation (T , P ) such that all paths in P share a common vertex.

Our proof will rely on the following characterization of local EPT graphs.

Theorem 5 (Golumbic and Jamison [16]). A graph G is a local EPT graph if and only if G is the line graph of a multigraph.
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Recall that given two graphs G and H , we say that G is the line graph of H , and write G = L(H), if the vertex set of G is
the edge set of H , and two distinct edges of H are adjacent as vertices of G if and only if they have a common endpoint. If
this is the case, then graph H is called a root graph of G. A graph G is said to be a line graph if G ∼= L(H) for some graph H .
These definitions are extended in the natural way to line graphs of multigraphs. In multigraphs, we allow loops and multiple
edges (however, we remark that the set of the line graphs of multigraphs does not change if loops are not allowed). For our
proof below, we will also need the definitions of the notions of matchings, triangles, and stars for multigraphs. A matching
in multigraph H is defined as a set of pairwise disjoint edges, but with loops allowed. A triangle in H is the set of all non-loop
edges in the subgraph of H induced by a set U of three pairwise adjacent vertices. A star is the set of all edges incident with
some vertex v ∈ V (H) (all loops at v, if any, are part of the star).

We also note that if G is the line graph of a multigraph H , then the maximal stable sets in G are exactly the maximal
matchings in H . Moreover, there are two types of maximal cliques in G: triangles in H , and inclusion-wise maximal stars in
H not contained in any triangle.

Theorem 6. The Strong EPT Clique problem is solvable in polynomial time for local EPT graphs given by a local EPT
representation.

Proof. Let G be a local EPT graph given by a local EPT representation (T , P ). Let v ∈ V (T ) be a vertex common to all paths
in P . We may assume without loss of generality that T is isomorphic to a star centered at v (that is, a graph of the form K1,n
in which v is of degree n). Then, G is isomorphic to the line graph of a multigraph H , defined as follows. The vertex set of H
is given by the set V (T )\{v}, each path of length two in P from a vertex u to a vertex w adds an edge to H joining u and w,
and each path P ∈ P of length 1 adds a loop to H at the endpoint of P other than v.

Let K be a maximal clique in G. We analyze the two cases, depending on whether K is a triangle or a star.
Suppose first that K is a triangle in H induced by a vertex set U . We claim that K is a strong clique in G if and only if

H contains no two disjoint edges each of which is either a loop at a vertex in U or connects a vertex of U with a vertex of
V (H)\U . On the one hand, if H contains two disjoint edges, say e and f , each of which is either a loop at a vertex in U or
connects a vertex of U with a vertex of V (H)\U , then any maximal matching M in H with {e, f } ⊆ M is a maximal stable
set in G disjoint from K , and K is not strong. On the other hand, if K is not strong, then there exists a maximal stable set S in
G disjoint from K . Then, S is a matching in H , and by maximality, every edge in K (in the multigraph H) has an endpoint in
common with an edge from S. This implies that S covers at least two vertices, say u and u′, of U . Since any edge connecting
u and u′ is in K , vertices u and u′ are covered by two distinct (and disjoint) edges in S. Clearly, each of these two edges is
either a loop at a vertex in U or connects a vertex of U with a vertex of V (H)\U .

Suppose now that K is an inclusion-wise maximal star in H not contained in a triangle, and let v ∈ V (H) be a vertex
incident with all edges in K . In this case, we claim that K is a strong clique in G if and only if one of the following two
conditions holds: either (i) H (and thus K ) has a loop at v, or (ii) H has no loop at v and nomatching of H leaves v uncovered
and covers all vertices adjacent to v. Indeed, if K has a loop at v, then K ⊆ V (G) consists of v and all neighbors of v (that is,
it is a simplicial clique), and in this case K is easily seen to be strong. If H has no loop at v and H has a matchingM that leaves
v uncovered but covers all vertices adjacent to v, then extendingM to any maximal matching yields a maximal stable set in
G disjoint from K , so K is not strong in this case. Finally, suppose that K is not strong. Then, H contains a maximal matching
M disjoint from K . In particular, this means that H has no loop at v (since otherwise any loop at v could be added to M to
obtain a larger matching, contradicting the maximality ofM), that v is not covered byM (otherwiseM would not be disjoint
from K ), and that all vertices adjacent to v are covered by M (since if there is a vertex v′ adjacent to v and not covered by
M , then adding an edge between v and v′ to M would yield a larger matching, thus contradicting the maximality ofM).

It remains to argue that the above conditions can be tested in polynomial time. Testing the condition verifying whether
a given triangle is a strong clique is clearly polynomial. The only remaining nontrivial part is to test whether, given a vertex
v of H , there is a matching in H not covering v and covering all vertices adjacent to v, where v ∈ V (H) is a vertex such that
H has no loop at v. Following similar ideas as in [24], this problem can be reduced to solving an instance of the maximum
weight matching problem on the graph H(v), where H(v) denotes the subgraph of H induced by all edges not containing v
but containing a neighbor of v. Every edge in H(v) connecting two distinct neighbors of v is assigned weight 2, and every
other edge in H(v) gets weight 1. Also, H(v) can be transformed to a simple graph H ′(v) by replacing any parallel edges
connecting two vertices with a single edge, and replacing every loop at a vertex xwith an edge connecting x to a new vertex
x′. It is easy to see that graph H ′(v) has a matching of total weight |NH(v)| if and only if H(v) contains a matching covering
all neighbors of v, which in turn is equivalent to the condition that H has a matching not covering v and covering all vertices
adjacent to v. Since the maximum weight matching problem is polynomial (see, e.g., [14]), the proof is complete. �

Some remarks related to Theorem 6 are in order. Roussopoulos [36] proved that given a graph G, testing whether G is
a line graph and computing a root H of G (if one exists) can be done in linear time. Using this result, it is not difficult to
obtain a polynomial time algorithm to test whether a given graph G is the line graph of a multigraph (and if so, to compute
a root of G). Using Theorem 5, these observations have implications for local EPT graphs. Every local EPT graph G is the line
graph of a multigraph H , which can be efficiently computed from G. Moreover, from H one can immediately obtain an EPT
representation of G. It follows that the Strong EPT Clique problem for local EPT graphs can be solved in polynomial time
even if a local EPT representation of the input graph is not given. Summarizing, we obtain:
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Theorem 7. The Strong Clique problem is solvable in polynomial time for line graphs of multigraphs (equivalently: for local EPT
graphs).

Recall that line graphs have only polynomiallymanymaximal cliques, which can be efficiently enumerated. Furthermore,
a line graph is equistable if and only if every edge of it is contained in a strong clique (this follows from Theorem 2, and was
also proved in [24]). Therefore, Theorem 7 gives an argument for the existence of a polynomial time recognition algorithm
for equistable line graphs which is, in our opinion, conceptually simpler than that of [24].

We conclude by mentioning some open problems related to the results of this paper.

Question 1. What is the computational complexity of recognizing general partition/strongly equistable/equistable/triangle
graphs?

The recognition of triangle graphs was conjectured to be co-NP-complete by Kloks et al. [21].

Question 2. What is the computational complexity of determining whether an EPT graph given by an EPT representation has any
(equivalently: all) of the above four properties?
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