
A Particle Swarm Optimizer for Multi-Objective

Optimization

Leticia Cagnina, Susana Esquivel

Lab. de Investigación y Desarrollo en Inteligencia Computacional (LIDIC)∗

Universidad Nacional de San Luis - Ej. de los Andes 950 - (5700) San Luis, Argentina

{lcagnina, esquivel}@unsl.edu.ar

Carlos A. Coello Coello

CINVESTAV-IPN (Evolutionary Computation Group)

Electrical Eng. Department - Av. IPN No. 2508, Col. - México D.F. 07300, MÉXICO

ccoello@cs.cinvestav.mx

ABSTRACT

This paper proposes a hybrid particle swarm
approach called Simple Multi-Objective Particle
Swarm Optimizer (SMOPSO) which incorporates
Pareto dominance, an elitist policy, and two tech-
niques to maintain diversity: a mutation operator
and a grid which is used as a geographical loca-
tion over objective function space.
In order to validate our approach we use three
well-known test functions proposed in the spe-
cialized literature.
Preliminary simulations results are presented and
compared with those obtained with the Pareto
Archived Evolution Strategy (PAES) and the
Multi-Objective Genetic Algorithm 2 (MOGA2).
These results also show that the SMOPSO algo-
rithm is a promising alternative to tackle multi-
objective optimization problems.
Keywords: Particle Swarm Optimization,
Multi-objective Optimization, Pareto Optimality.

1. INTRODUCTION

Problems with multiple objectives are present
in a great variety of real-life optimization prob-
lems. In these problems there are several conflict-
ing objectives to be optimized and it is difficult
to identify what the best solution is.

Despite the considerable diversity of techniques
developed in the Operations Research field to
tackle these problems, their intrinsic complexity
calls for alternative approaches. Over the last
decades, heuristics that find approximate solu-
tions have attracted great interest. From these
heuristics the Multi-Objective Evolutionary Al-
gorithms (MOEAs) have been found to be very
successful to solve multi-objective optimization
problems [1], [2], [3], [4], [5].

Another technique that has been adopted in
the last years for dealing with multi-objective op-

timization problems is Particle Swarm Optimiza-
tion (PSO) [6], [7], which is precisely the ap-
proach adopted in the work reported in this pa-
per.

The PSO algorithm was first proposed by J.
Kennedy and R. Eberhart in 1995 [8] and it was
successfully used in several single-objective opti-
mization problems. PSO is based on the behavior
of communities that have both social and individ-
ual conducts, similar to birds searching for food.

PSO is a population-based algorithm. Each
individual (particle) represents a solution in a
n−dimensional space. Each particle also has
knowledge of its previous best experience and
knows the global best experience (solution) found
by the entire swarm.

Particles update their exploration directions
(their flights) using the following equations:

vi,j = w×vi,j+c1×r1×(pi,j−xi,j)+c2×r2×(pg,j−xi,j) (1)

xi,j = xi,j + vi,j (2)

where w is the inertia factor influencing the local
and global abilities of the algorithm, vi,j is the
velocity of the particle i in the j − th dimension,
c1 and c2 are weights affecting the cognitive and
social factors, respectively. r1 and r2 ∼ U(0, 1);
pi stands for the best value found by particle i
(pbest) and pg denotes the global best found by
the entire swarm (gbest).

After the velocity is updated, the new position i
in its j− th dimension is calculated. This process
is repeated for every dimension and for all the
particles in the swarm.

In order to use PSO for multi-objective opti-
mization problems, our SMOPSO algorithm was
hybridized with some concepts taken from de EAs
field such as a mutation operator, and with con-
cepts commonly used in MOEAs, such as a selec-
tion based on Pareto dominance and mechanisms
to produce a good spread of solutions.

 JCS&T Vol. 5 No. 4 December 2005

204

The remainder of the paper is organized as fol-
lows: Section 2 gives a brief description of the
most relevant previous work. Section 3 reviews
the basic concepts of multi-objective optimiza-
tion. Section 4 describes our approach. Section 5
presents the test functions taken from the special-
ized literature to validate our approach. Section
6 defines the metrics used to evaluate the perfor-
mance of the algorithms. Section 7 explains the
experimental design and gives a short description
of PAES and MOGA2, the multi-objective evo-
lutionary algorithms selected for comparing our
results. Section 8 shows and discusses the results
obtained. Finally, our conclusions and possible
future research lines are presented in Section 9.

2. STATE OF ART IN
MULTI-OBJECTIVE PSO

In the last few years, several PSO algorithms
have been proposed to trackle the multi-objective
optimization problem. Here we briefly review the
most relevant of them.

In Coello Coello and Lechuga [9], the authors
adopt a Pareto-based selection scheme combined
with an adaptive grid (similar to the one incor-
porated in PAES [10]). The adaptive grid is
adopted both to store the non-dominated solu-
tions found during the search and to distribute
them uniformly along the Pareto frontier.

Hu and Russell [11] proposed their Dynamic
Neighborhood PSO, where the neighborhood of
each particle is calculated at each iteration, after
calculating distances to every other particle. In
each new neighborhood the local best particle is
identified.

Ray and Lew [12] worked with Pareto domi-
nance and a PSO hybridized with some concepts
of EAs. The non-dominated particles are ranked
based on Pareto ranking and stored as a set of
leaders (SOL). Selection of a leader from the SOL
is done with proportional selection to ensure that
SOL members with a larger crowding radius have
a higher probability of being selected as leaders.
The process in turn results in a spread along the
Pareto frontier.

Parsopoulos et al. [13] proposed a PSO al-
gorithm using an enhanced elitist technique that
consists in maintaining the non-dominated solu-
tions found during the run of the multi-objective
algorithm. These solutions are stored in an ex-
ternal archive. A new solution is stored in the file
only when it is non-dominated by all the other so-
lutions already stored in archive and it is deleted
when it is dominated by some solution stored in
the file.

Toscano and Coello Coello [14] proposed the
use of clustering techniques to improve the per-
formance of a multi-objective PSO. They used

Pareto dominance to guide the flight direction of
a particle and had a set of sub-swarms to focal-
ize the search. A PSO algorithm is run in each
sub-swarm and at some point the sub-swarms ex-
change information.

On the other hand, our approach uses a PSO
algorithm extended with the concept of Pareto
dominance, elitism, a mutation operator and a
grid (similar to the one used by PAES) to main-
tain diversity.

3. BASIC CONCEPTS

The general Multi-Objective Optimization Prob-
lem can be defined as follows [9]:

Def. 1: Find the vector ~x∗ = [x∗1, x
∗
2, . . . , x

∗
n]
T

which satisfies the m inequality constrains:

gi(~x) ≤ 0 i = 1, 2, . . . ,m (3)

and the p equality constrains:

hi(~x) = 0 i = 1, 2, . . . , p (4)

and optimizes the vector function:

~f (~x) = [f1(~x), f2(~x), . . . , fk(~x)]
T

(5)

The constrains given by (3) and (4) define the
feasible region Ω and any point in Ω defines a
feasible solution. The k components of the vector
~f(~x) are the criteria to be considered. The con-

strains ~gi(~x) and ~hi(~x) represent the restrictions
imposed on the decision variables. The vector ~x∗

denotes the optimum solutions.
When there are several objective functions, the
concept of optimum changes, because in multi-
objective optimization problems the purpose is
to find “trade-off” solutions rather than a sin-
gle solution. The concept of optimum commonly
adopted in multi-objective optimization is the one
proposed by Vilfredo Pareto in 1986 (and called
Pareto optimality). It is defined as:
Def. 2 (Pareto Optimality): A point ~x∗ ∈ Ω is
Pareto optimal if ∀~x ∈ Ω and I = {1, 2, . . . , k}
either:

∀i ∈ I (fi (~x∗) ≤ fi (~x)) (6)

and, there is at least one i ∈ I such that

fi (~x∗) < fi (~x) (7)

This definition says that ~x∗ is Pareto optimal if
there exists no feasible vector ~x which would de-
crease some criteria without causing a simultane-
ous increase in at least one other criterion.
Other important definitions associated with
Pareto Optimality are the following:
Def. 3 Pareto Dominance: A vector
~x = (x1, x2, . . . , xk) is said to dominate ~y =
(y1, y2, . . . , yk), denoted by ~x � ~y, if and

 JCS&T Vol. 5 No. 4 December 2005

205

only if ~x is partially less than ~y, i.e., ∀i ∈
{1, 2, . . . , k} : xi ≤ yi and, at least for one i,
xi < yi.
Def. 4 Pareto Optimal Set: For a given multi-
objective problem ~f(x), the Pareto optimal set,
denoted by P∗ or Ptrue, is defined as:

P∗ = {x ∈ Ω |6 ∃x′ ∈ Ω~f(x
′
) � ~f (x)}. (8)

Def. 5 Pareto front: For a given multi-objective

problem ~f(x) and Pareto optimal set P∗, the
Pareto front, denoted by PF∗ or PFtrue, is de-
fined as:

PF∗ = {~y = ~f = (f1 (x) , f2 (x) , . . . , fk (x)) | x ∈ P∗} (9)

4. OUR APPROACH

In order to provide a multi-objective approach
to PSO we extend the “classical” model described
above including:
A Uniform Mutation Operator [15]. It selects one
dimension of the particle with a certain probabil-
ity and changes its value. The new value must be
in the range permitted for this dimension.
An elitist policy with the objective of maintain-
ing the best solutions (non-dominated) found in
the flight cycles (iterations). The non-dominated
solutions are stored in an external archive. This
archive has a grid structure (similar to the PAES
algorithm) [16] constructed as follows: each ob-
jective is divided into 2d equal divisions. In this

way the entire search space is divided into 2d
k

unique equal size k−dimensional hypercubes (d is
a user parameter and k is the number of objective
functions). The stored solutions are placed in one
of these hypercubes according to their locations
in the objective space. The number of solutions
in each hypercube is counted. When the archive
is full and there is a new non-dominated solu-
tion it cannot be included automatically. First,
the hypercube that has more non-dominated so-
lutions is found. If the new solution does not be-
long to that hypercube it is inserted in the archive
and at random one of the solutions from the
highest covered hypercube is deleted. So, non-
dominated solutions are privileged and placed in
an archive. When non-dominated solutions com-
pete for a space in the archive, they are evaluated
based on how crowded they are in objective func-
tion space. The one residing in the least crowded
area gets preference. In this manner, we obtain
diversity in the non-dominated solutions.
New mechanisms to select the pbest and gbest par-
ticles. A multi-objective PSO cannot use equa-
tion (1) in a straightforward manner for pbest
and gbest because all non-dominated solutions
are equally good. Our approach updates pbest,
the best experience found for a particle, only
when the new particle is non-dominated and it
dominates the previous pbest. In order to select

1. SMOPSO{
2. Init Pop();
3. Init Velocity();
4. Evaluate Pop();
5. Update Fbest();
6. Update Pbest();
7. Insert nodom();
8. Gbestpos = rnd(0,nodomfileSize)
9. for(i=1 to MAXCYCLES){
10. for(j=0 to MAXPARTICLES){
11. Update Velocity();
12. Update Particle();
13. }
14. Keeping();
15. Evaluate Pop();
16. Update Fbest();
17. Update Pbest();
18. Insert nodom();
19. Gbestpos = rnd(0,nodomfileSize)
20. }
21. Print Statistics();
22. Generate Outfile();
23. }

Figure 1: Pseudo-code SMPSO

gbest, the global best particle, at each iteration
we randomly select a non-dominated particle of
the external archive, because by definition all the
Pareto optimal solutions are equally good. All
other variables in equations (1) and (2) have the
meaning defined for the “classic” PSO.
The pseudo-code of our approach, SMOPSO is
shown in Figure 1.

Once all the structures have been allocated (line
1), the particle swarm is initialized with random
values corresponding to the ranges of the decision
variables, these values are dependent on the test
functions. The velocities are initialized with zero
values (lines 2-3). Then the swarm is evaluated
using the corresponding objective functions (line
4). Next, the fitness vectors are updated (line
5). As we are dealing with multi-objective opti-
mization, these vectors store the values of each
decision variable, in which the particles obtained
the best values in a Pareto sense. At this stage
of the algorithm these vectors are filled with the
results of the initial particle evaluations. Analo-
gously, these values are copied in the pbest vectors
(line 6). Then all non-dominated particles are in-
serted in the grid, i.e. in the external file (line 7)
and the global gbest particle is randomly selected
(line 8).
The flight cycle starts at line 9, the velocity of
each particle is updated, using (1) and its posi-
tion is also updated using (2) (lines 11-12). The
keeping operation is carried out to maintain the
particles into the allowable range values (line 13).
Then the particles are mutated, evaluated and
the fitness and pbest vector are, if appropriate,
updated (lines 14-17).
As the particles moved in the search space be-
cause they changed positions, the dominance of

 JCS&T Vol. 5 No. 4 December 2005

206

each particle (line 18) is verified and, if appro-
priate, they are inserted in the grid. Then the
new gbest is randomly selected (line 19). The
cycle is executed until the condition is false and
at this point we print the statistics and generate
an output file, which contains the non-dominated
particles (line 22).

5. TEST FUNCTIONS

In order to validate our approach, we selected the
following three well-known test functions [17] :
MOP5: Proposed by Viennet, it is an (un-
constrained) three objective function that has
its Ptrue disconnected and asymmetric, and its
PFtrue is connected. It is defined as:

F = (f1(x, y), f2(x, y), f3(x, y)) with
−30 ≤ x, y ≤ 30

f1(x, y) = 0.5 ∗ (x2 + y2) + sin(x2 + y2),
f2(x, y) = (3x−2y+4)2/8+(x−y+1)2/27+15,

f3(x, y) = 1/(x2 + y2 + 1)− 1.1e(−x2−y2)

MOP6: This is a test function constructed us-
ing Deb’s methodology. It is unconstrained and
has two objectives functions. Ptrue and PF true
are disconnected and its PF true consists of four
Pareto curves. It is defined as:

F = (f1(x, y), f2(x, y)) with 0 ≤ x, y ≤ 1
f1(x, y) = x,

f2(x, y) = (1 + 10y) ∗ [1− (x/(1 + 10y))2 −
x/(1 + 10y) ∗ sin(2π4x)]

MOPC1: This is a function with constraints and
two objectives and it was proposed by Binh and
Korn. In this case Ptrue is an area and PF true is
convex. It is defined as:

F = (f1(x, y), f2(x, y)) with 0 ≤ x ≤ 5,
0 ≤ y ≤ 3 and

f1(x, y) = 4x2 + 4y2,
f2(x, y) = (x− 5)2 + (y − 5)2

subject to:

0 ≥ (x− 5)2 + y2 − 25
0 ≥ −(x− 8)2 − (y + 3)2 + 7.7

6. EXPERIMENTAL PERFORMANCE
METRICS

Usually among the relevant aspects to measure
in the performance of a multi-objective optimiza-
tion algorithm, there are two that are very im-
portant: 1) the spread across the Pareto optimal
front and 2) the ability to attain the final trade-
off solutions.
In this direction, we select the following metrics
to evaluate the performance of our approach:

Generational Distance (GD): proposed by
[18] this metric returns a value representing the
average distance of the solutions in the Pareto
front constructed by a multi-objective algorithm
(PFknown) from PFtrue and it is defined as:

GD =
1

n

√√√√
n∑

i=1

d2
i

where n is the number of solutions in PFknown
and di is the Euclidean distance (in objective
space) between each vector in PFknown and the
nearest member of PF true. A zero result indi-
cates that both fronts are the same, any other
value indicates PFknown deviates from PF true.
Spacing (S): [19] proposed a metric which
allows to measure the distribution of vectors
throughout PFknown. It is defined as:

S =

√√√√ 1

(n− 1)

n∑

i=1

(d− di)2

where n is the number of solutions in PFknown,
di = minj(| f i1(~x) − f j1 (~x) | + | f i2(~x) − f j2 (~x) |),
i, j = 1, . . . , n and d is the mean of all di.
A zero value for this metric means that all mem-
bers of PFknown are equidistantly spaced.

7. EXPERIMENTS

The experiments were designed to evaluate the
performance of SMOPSO to existing models on
the three test functions described in section 5.

The first comparative model is PAES algorithm
[10], which is a (1 + 1)-ES evolution strategy (i.e.
it applies the mutation operator over one individ-
ual and generates only one child). It also imple-
ments elitism using an external file to store the
non-dominated individuals. This algorithm was
selected because it has the same grid technique
that we implement in SMOPSO for maintaining
diversity.

The second model is MOGA2 [20], a genetic al-
gorithm that uses a Pareto ranking technique, in
which the rank of an individual xi is calculated
as xi = 1 + ni, where ni is a penalty and indi-
cates the number of individuals that dominate xi,
so all the non-dominated individuals have a rank
1. Also, to avoid premature convergence and to
maintain diversity among the non-dominated so-
lutions, it implements a niching technique. The
original MOGA was extended with an elitist pol-
icy and this last version, MOGA2, is the one used
in this work.

The initial parameter settings for all the algo-
rithms are summarized in Table 1. The best algo-
rithm parameter values were empirically derived

 JCS&T Vol. 5 No. 4 December 2005

207

Table 1: Parameter Settings

Parameters SMPSO

MOP5 MOP6 MOPC1

Iterations 7000 3000 2000
Extern file size 799 799 799
Crossover prob. - - -
Mutation prob. 0.5 0.0335 0.3

Particles/Individuals 30 20 20
Divisions 5 5 5
C1=C2 1.5 1.6 1.5

W 0.5 0.6 0.5

Parameters PAES

MOP5 MOP6 MOPC1

Iterations 210000 60000 40000
Extern file size 799 799 799
Crossover prob. - - -
Mutation prob. 0.03 0.05 0.05

Particles/Individuals 1 1 1
Divisions 5 6 5

Parameters MOGA2

MOP5 MOP6 MOPC1

Iterations 7000 3000 2000
Extern file size 799 799 799
Crossover prob. 0.8 0.8 0.8
Mutation prob. 0.025 0.025 0.025

Particles/Individuals 30 20 20

Table 2: Values of the Performance Metrics

Metric GD

SMOPSO PAES MOGA2
MOP5 0.011083 0.167133 0.727717
MOP6 0.000298 0.02204 0.000999

MOPC1 0.002687 0.01986 2.441103

Metric S

SMOPSO PAES MOGA2
MOP5 0.39566 0.378168 0.200790
MOP6 0.003402 0.011853 0.009080

MOPC1 0.116149 0.32289 0.942198

from a set of previous experiments. We ran the al-
gorithms up to a maximum number of evaluations
(iterations× individuals) of the multi-objective
function, in order to compare them on the basis
of the same amount of computational effort. The
entry Divisions, in Table 1, indicates the number
of hypercubes in the grid used to maintain diver-
sity. Each algorithm was executed ten times on
each test function.

8. RESULTS AND DISCUSSION

The solutions obtained for the algorithms
(PFknow) were compared with the true Pareto
fronts (PFtrue) for each function. These last
were obtained using an enumerative method with
the following accuracy of the decision variables:
0.05 for MOP5, 0.003 for MOP6, and 0.01 for
MOPC1.
The values shown in Table 2 correspond to
mean values calculated over the ten runs per-
formed in each experiment. The performance
of SMOPSO across the benchmark functions

is comparable or overcomes the performance
of PAES and MOGA2. SMOPSO obtained
better metric values that the other algorithms.
This indicates that the solutions in PFknow
are the same or are very close to the PFtrue
with a good distribution of points in all the cases.

(a) MOP5 with PAES.

(b) MOP5 with SMOPSO.

(c) MOP5 with MOGA2.

Figure 2: MOP5 with PAES, SMOPSO and MOGA2

 JCS&T Vol. 5 No. 4 December 2005

208

However, in the graphics of PFknow and PFtrue
shown in Figure 2, it can be observed that even
though MOGA2 obtained a better distribution of
solutions (better value of S metric), for the MOP5
function, it can not approximate the top portion
of the Pareto front.

(a) MOP6 with PAES.

(b) MOP6 with SMOPSO.

(c) MOP6 with MOGA2.

Figure 3: MOP6 with PAES, SMOPSO and MOGA2

The same occurs with the solutions found by
PAES. Only SMOPSO approximated solutions
over both curves of the front.

The function with disconnected front MOP6
(Figure 3) was not difficult for any algorithm, be-
cause all of them obtained PFknow very close to
PFtrue with a good distribution of solutions.

(a) MOPC1 with PAES.

(b) MOPC1 with SMOPSO.

(c) MOPC1 with MOGA2.

Figure 4: MOPC1 with PAES, SMOPSO and
MOGA2

 JCS&T Vol. 5 No. 4 December 2005

209

Regarding the function with constraints,
MOPC1 (Figure 4), although the three algo-
rithms found good approximations to the true
Pareto front we observe that the distance among
solutions generated by PAES, in the bottom of
the front, are greater than the solutions generated
by SMOPSO. Furthermore MOGA2 produces so-
lutions at the bottom which are away from the
true Pareto front.

PAES and MOGA2 showed weaknesses at find-
ing some parts of the true Pareto fronts, whereas
SMOPSO does have not this problem. This fact
is perhaps due to the strong exploration of the
search space provided by the mutation operator
at every flight cycle.

9. CONCLUSIONS AND FUTURE
WORK

The performance of our approach over all the
benchmark functions studied turned out to be
satisfactory in the sense that the aim was to de-
termine if the new algorithm was able to obtain
results at least comparable to those obtained by
two well-known MOEAs.

The results showed that, in spite of its sim-
plicity, the SMOPSO is a promising approach to
multi-objective optimization because its perfor-
mance was generally better that the models used
for comparison. As part of our ongoing work we
are going to compare SMOPSO with other more
competitive MOGAs as NSGA-II [21], [22] and
the Micro-Genetic Algorithm [23].

References
[1] K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A

fast elitist non-dominated sorting genetic algorithm
for multi-objective optimization: Nsgaii. In Parallel
Problem Solving from Nature, PPSN VI, pages 849–
858. Springer, 2000.

[2] J. Schaffer. Multiple objective optimization with vec-
tor evaluated genetic algorithms. In First Interna-
tional Conference on Genetic Algorithms, pages 99–
100, 1985.

[3] E. Zitzler, K. Deb, and L. Thiele. Comparision
of multiobjective evolutionary algorithms: Empiri-
cal results. Evolutionary Computation, 8(2):173–195,
2000.

[4] J. Knowles and D. Corne. Approximating the non-
dominated front using the pareto archived evolution
strategy. Evolutionary Computation, 8(2):149–172,
2000.

[5] M. Laumanns, E. Zitzler, and L. Thiele. A unified
model for multi-objective evolutionary algorithms
with elitism. In Congress on Evolutionary Computa-
tion, pages 46–53, Piscataway, NJ, 2000. IEEE Ser-
vice Center.

[6] J. Kennedy and R. Eberhart. Swarm Intelli-
gence. Morgan Kaufmann Publishers, California,
USA, 2001.

[7] J. Kennedy and R. Mendes. Population structure and
particle swarm performance. In Congress on Evo-
lutionary Computation, volume 2, pages 1671–1676,
Piscataway, NJ, May 2002. IEEE Sevice Center.

[8] J. Kennedy and R. Eberhart. Particle swarm op-
timization. In International Conference on Neural
Networks, pages 1942–1948, Piscataway, NJ., 1995.
IEEE Sevice Center.

[9] C. Coello Coello and M. Lechuga. Mopso: A proposal
for multiple objective particle swarm optimization. In
Congress on Evolutionary Computation, pages 1051–
1056, Piscataway, NJ., 2002. IEEE Service Center.

[10] J. Knowles and D. Corne. M-paes: A memetic algo-
rithm for multiobjective optimization. In Congress
on Evolutionary Computation, pages 325–332, Pis-
cataway, NJ, 2000. IEEE Service Center.

[11] X. Hu and R. Eberhart. Multiobjective optimiza-
tion using dynamic neigborhood particle swarm opti-
mization. In Congress on Evolutionary Computation,
pages 1677–1681, Piscataway, NJ., 2002. IEEE Ser-
vice Center.

[12] T. Ray and K. Liew. A swarm metaphor for multiob-
jective design optimization. Engineering Optimiza-
tion, 34(2):141–153, 2002.

[13] K. Parsopoulos, T. Bartz, and Vrahatis. Particle
swarm optimizers for pareto optimization with en-
hanced archiving techniques. In Congress on Evo-
lutionary Computation, pages 1780–1787, Piscatawy,
NJ., 2003. IEEE Service Center.

[14] C. Coello Coello and G. Toscano Pulido. Using clus-
tering techniques to improve the performance of a
multi-objective particle swarm optimizer. In Genetic
and Evolutionary Computation Conference, volume
3102 of Lecture Notes in Computer Science. Springer
Verlag, 2004.

[15] T. Bäck, D. Fogel, and Z. Michalewicz, editors. Han-
dandbook of Evolutionary Computation. IOP Pub-
lishing Ltd and Oxford University Press, 1997.

[16] K. Deb. Multi-Objective Optimization using Evolu-
tionary Algorithms. John Wiley & Sons, Ltd., Eng-
land, 2001.

[17] C. Coello Coello, D. Van Vedhuizen, and G. Lamont.
Evolutionary Algorithms for Solving Multi-Objective
Problems. Kluwer Academic Publishers, New York,
USA, 2002.

[18] D. Veldhuizen. Multiobjective Evolutionary Algo-
rithms: Classifications, Analyses, and New Innova-
tions. PhD thesis, Air Force Institute of Technology,
Dayton, 1999.

[19] J. Schott. Fault tolerant design using single and
multi-criteria genetic algorithms. Master’s thesis,
Massachusetts Institute of Technology, Boston, 1995.

[20] C. Fonseca and P. Fleming. Genetic algorithms for
multiobjective optimization: Formulation, discussion
and generalization. In Fifth International Conference
on Genetic Algorithms, pages 416–423, San Mateo,
California, 1993. Morgan Kaufmann Publishers.

[21] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A
fast elitist non-dominated sorting genetic algorithm
for multiobjective optimization: Nsga ii. Technical
Report 200001, Indian Institute of Technology, Kan-
pur, India, 2000.

[22] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A
fast elitist non-dominated sorting genetic algorithm
for multiobjective optimization: Nsga ii. In Schoe-
nauer M. et al., editor, Parallel Problem Solving from
Nature, Lecture Notes in Computer Sciences 1917,
pages 849–858. Springer, 2000.

[23] C. Coello Coello and G. Toscano Pulido. Multiobjec-
tive optimization using a micro genetic algorithm. In
Goodman L. et al., editor, Genetic and Evolutionary
Conference, pages 274–282, San Francisco, Califor-
nia, 2001. Morgan Kaufmann Publishers.

 JCS&T Vol. 5 No. 4 December 2005

210

