
High availability for parallel computers

Dolores Rexachs and Emilio Luque

Computer Architecture an Operating System Department,

Universidad Autónoma de Barcelona, Barcelona 08193, Spain

ABSTRACT

Fault tolerance has become an important issue for parallel

applications in the last few years. The parallel systems’

users want them to be reliable considering two main

dimensions, availability and data consistency.

Availability can be provided with solutions such as

RADIC, a fault tolerant architecture with different

protection levels, offering high availability with

transparency, decentralization, flexibility and scalability

for message-passing systems. Transient faults may cause

an application running in a computer system to be

removed from execution, however the biggest risk of

transient faults is to provoke undetected data corruption

that changes the final result of the application without

anyone knowing. To evaluate the effects of transient

faults in the robustness of applications and validate new

fault detection mechanism and strategies, we have

developed a full-system simulation fault injection

environment1.

Keywords: Fault tolerance, availability, RADIC,

transient faults, performability.

1. INTRODUCTION

To achieve more computing power it is usual to

aggregate a large number of computing elements. The

problem of this approach is that the more elements a

system has, the probability of faults grows.

Recent trends in High Performance Computing (HPC)

systems clearly indicate that future increases in

performance, in addition to those resulting from

improvements in multicore processor performance, will

be achieved through corresponding increases in system

scale. This growth in system scale, and the resulting

component count, poses a challenge for HPC system and

application software with respect to fault tolerance.

Fault tolerance has become an important issue for parallel

applications running in parallel computer in the last few

years. The miniaturization and the growth of the number

of components, which form parallel machines, are the

major root cause of the failures increasingly seen on these

machines. The parallel machines’ users want them to be

reliable. Whereas availability refers to a system being in

service, reliability refers to it performing correctly. Thus,

there exists a fundamental distinction between reliable

items and available items. When a reliable item fails, its

1 This work is supported by the MEC-Spain under contract

TIN2007-64974

life ends. When an available item fails, it can be repaired

or otherwise returned to service after a relatively short

down time. An available item oscillates all its life

between the states "up" (working) and "down" (out of

service) (Figure 1)

The improvement in computer reliability obtained by

traditional methods is considered insufficient in many

new installations, especially since computers are

increasingly being used continuously and efficiently, a

reliability increase can only be achieved by embedding

redundant elements.

In order for the execution to complete correctly, parallel

systems should use some fault tolerance strategy. In any

case it is important to note that even with fault tolerance

strategies, service interruptions (a complete stop of the

program execution) may occur if data inconsistency or

the system degradation generated by the faults reaches an

unacceptable level. We will analyze some of the software

methods that let parallel computers perform their

intended function or at least keep their environment safe

in spite of internal faults in hardware (persistent or hard,

transient or soft errors including silent errors that can

produce data inconsistency).

Figure 1. Reliable and available system

From a user’s point of view, fault tolerance effects have

two dimensions, availability and data consistency, as

shown in Figure 2. Without fault tolerance, the execution

is interrupted by one fault, but when fault tolerance is

provided, the system can be maintained available with

higher or lower degradation and with the possibility of

detecting silent error reducing possible data

inconsistency.

Fault tolerance represents a key issue in order to provide

high availability in these parallel systems, because it

Figure 2. Fault tolerant effects

System

Not fault
tolerant
systems

Run Silent
errors?

Possible data
inconsistency?

Not run
Non-

availability

Fault tolerant
systems: Detection,
protection, recovery

Run Overhead

Fault
Run with X

error

High Availability

Possible performance
degradation

Not Run
Non-availability

Safe stop. Decrease
data inconsistency

JCS&T Vol. 10 No. 3 October 2010

110

provides fault detection, protection and recovery. Fault

tolerance can be provided in a parallel computer at three

different levels [10]: hardware level, architecture level

and application/system software level. The scope of this

paper is in the application /system software level, where

checkpointing techniques and rollback recovery are

widely used to provide fault tolerance. As shown in

Figure 3, there are different rollback-recovery protocols

which can be useful to assure the application completion

[6] [11]. The absence of a global clock in clusters makes

it difficult to initiate checkpoints in all the streams of

execution at the same time instance. We can use

coordinated checkpointing or a message logging protocol.

A fault-tolerant system has the unique property that its

overall reliability is higher than the reliability of its

constituting parts. The secret of fault tolerance is how to

structure these redundant components so that the failure

of one does not bring the whole system down.

In order to achieve high availability, the challenges of a

fault-tolerant system are to provide automatic and

transparent fault detection, protection and recovery,

which implies the evaluation of the appropriate quality

indexes, as modeled in Figure 4. In addition we impose

the constraint that the implementation of the proposed

mechanisms will be done using only software solutions

without requiring additional dedicated hardware.

Assuming a hypothesis that the effective performance of

a high performance computer depends on its availability

and that providing high availability implies a

performance overhead, the study of the root causes of

such overhead is necessary, including the performance

degradation caused by faults.

Considering all these aspects, we proposed and developed

RADIC (Redundant Array of Distributed Independent

Fault Tolerance Controllers). RADIC is an architecture

for providing Fault Tolerance (FT) in message-passing

systems offering high availability with transparency,

decentralization, flexibility and scalability for standard

computer clusters with some node-local storage (hard

disk, solid state disks –SSD- or partially dedicated main

memory).

With the objective of analyzing transient faults effects’ in

computer systems’ processor registers and memory, we

have also developed an extension of COTSon [1], the

HP’s and AMD joint full system simulation environment.

This extension allows the injection of faults that can

change a single bit in processor registers and memory of

the simulated computer. The developed fault injection

system makes it possible to: evaluate the effects of single

bit flip transient faults in an application, analyze the

robustness of application against single bit flip transient

faults and validate fault detection mechanism and

strategies.

 The remainder of this paper is organized as follows: The

next section presents the basic concepts. Section 3

explains the protection levels currently implemented in

RADIC architecture with some experimental results

relating to them. More experimental results and the

experimental environment are presented in section 4 and

in section 5 we present a tool for analyzing soft errors,

including silent errors that can produce data

inconsistency. Finally, in section 6 we present our

conclusions and future work.

2. FAULTS IN PARALLEL COMPUTERS:

PROTECTION, DETECTION AND

RECUPERATION

Computer clusters may be considered as a class of

computing systems with degradable performance [13]

i.e., under some circumstances during a determined

utilization period, the system may present different

performance levels. Such performance degradation is

generally caused by faults occurrence, which may also

affect the system availability if they have generated an

interruption.

In order to achieve high availability, a fault-tolerant

system must provide automatic and transparent fault

detection, protection and recovery (Figure 5).

Until now, different efforts have been focused on

providing high availability to computer clusters [3], [9].

The solutions resulting from these efforts are commonly

based on rollback-recovery redundancy techniques [2],

[4] and they have shown their efficacy in improving

computer cluster performance and availability. In the

Figure 3. Rollback-recovery protocols tree in message-passing

systems

Figure 4. Fault Tolerance Challenges / Features measures

Checkpoint

Coordinated
algorithms

Markers based
algorithms

Headers based
algorithms

Markers
&Headers based

algorithms

Independent
algorithms

Without log Message logging

Pessimistic
approach

Sender based
logging

Receiver based
logging

Optimistic
approach

Sender based
logging

Receiver based
logging

JCS&T Vol. 10 No. 3 October 2010

111

process of design and implementation it is necessary to

take decisions that affect the trade-off between cost

(resource use), performance and availability.

There is a correlation between performance and

availability, such correlation is also known as

performability. The fault tolerance mechanisms generate

some kind of performance overhead because of their

related activities, such as process state saving, messages

exchange logging or system health monitoring.

Performability, as the property of a computer system to

deliver the performance required even though there are

faults, is considered as a realistic, complete and accurate

index for evaluating degradable systems such as

computer clusters (Figure 6).

Time To Failure (TTF) expresses the time to a fault or an

error, even though it refers specifically to failures. Mean

Time To Failure (MTTF) of a component expresses the

amount of time elapsed between the last system startup or

restart and then next error of the component. How these

factors are involved in availability evaluation is shown in

Figure 7. MTTF of a component is commonly expressed

in years and it is obtained based on an averaged

estimative of failure prediction done by the component’s

supplier.

Solutions to ensure a large MTTI (Mean Time To

Interrupt) must also provide the means to restore the

original system configuration (initial number of

replacement nodes, or the process per node distribution)

without stopping a running application. In addition to

“reactive fault tolerance” (activities after a fault), it is

also very desirable that it should perform preventive

maintenance tasks by, for example, replacing fault-

probable machines without system interruptions

(Proactive Migration).

A repairable item is defined by its availability. Stationary

availability (A) is defined as the ratio between the sum of

all operating times (MUT) and the useful lifetime

(MUT+MDT).

When faults are taken into consideration, and these faults

degrade the system’s performance, performability

measurements can be applied to evaluate a system in the

presence of faults. Figure 8 depicts a chart exemplifying

the throughput of an application, executed in an “on-line

repairable” fault tolerant system, when single or

concurrent faults occur against different degrees of

availability (including no fault tolerance). This fault

tolerance solution is characterized by keeping the system

working but with the performance degraded. In this

context, time constrained applications may not produce

the expected results before their deadlines. In some cases,

the degradation may reach unacceptable levels, leading to

the need to perform a safe-stop and restart the entire

system. Furthermore, the kind of fault uncovered by the

availability degree may occur, interrupting the system,

i.e., correlated faults when the availability degree only

protects the system from single faults.

Figure 8: Throughput of an application in the presence of faults

with different Fault Tolerance levels

Undetected errors, either hard or soft, are due to the lack

of detectors for a component or the inability to detect it

(e.g. transient effect too short). The real danger of

Figure 5. Actions in fault tolerant systems

Figure 6. Parallel computer performability

Availability (A)

Mean Time To Failure (MTTF)

Mean Up Time (MUT) (operational time)

Mean Down Time (MDT) (non-operational time)

Mean Time To Repair (MTTR)

Figure 7. Availability factors

• Checkpoints: Do and save state

• To store checkpoints and event log

• Manage the "garbage" (unnecessary checkpoint)

Protection:
Redundancy

• Monitoring: To detect communication failures

• Monitoring the nodes, e.g.. using watchdog and
heartbeat mechanisms

Detection

• Avoid recognizing false failures

• Tolerating Byzantine faults
Diagnostic

• Rerun the processes of the node that has failed since its last checkpoint

• Rerun using the log messages,

• Generate a new checkpoint, to be protected.
Recovery

• Ensure that all processes can communicate with
the recovery process

Reconfigurat
ion: fault
masking

0

5

10

15

20

25

30

35

… 83 88 93 98

10
3

10
8

11
3

11
8

12
3

12
8

Th
ro

u
gh

p
u

t

Time

Throughput of an application in fault

presence with spares

0

5

10

15

20

25

30

35

… 84 90 96 10
2

10
8

11
4

12
0

12
6 …

Th
ro

ug
hp

ut

Time

Throughput of an application with

Fault Tolerance and degradation

Faults

0

5

10

15

20

25

30

35

… 83 88 93 … 4 9 …

11
8

12
3

12
8

Th
ro

u
gh

p
u

t

Time

Throughput of an application without
FT

0

5

10

15

20

25

30

35

… 83 88 93 98

10
3

10
8

11
3

11
8

12
3

12
8

Th
ro

u
gh

p
u

t

Time

Throughput of an application under

maintenance stop

JCS&T Vol. 10 No. 3 October 2010

112

undetected errors is that answers may be incorrect but the

user wouldn’t know it and they can also produce data

inconsistency.

There are only a few publications showing evidence the

occurrence of soft errors. The first evidence of soft errors

were caused by contamination in the chips production in

late 70’s and 80’s. Since 2000’s, the reports of soft errors

in large computer installations such as supercomputers

and server farms are becoming more frequent. This

happens because the number of components in this kind

of installations is very large (thousands of CPU and

terabytes of memory) and the powerful multi/many-core

processors exhibit a high level of miniaturization (high

density of transistors) and in consequence they are

potentially less robust against transient faults. In Figure 9

(adapted from [12]) the possible outcomes of bit flip in a

computer processor or memory are described.

Figure 9: Classification of possible outcomes of a transient fault

For those systems requiring continuous operation over

long times, having an “on-line repair mechanism”

without disruption of the operation, with or without

degradation of operation, is a key feature. Automatic

reconfiguration can fail in case the of a second fault in

the working units when it does not support simultaneous

non correlated concurrent faults, although the presence of

a maintenance system could reduces reliability, because

of additional components. To deal with correlated

concurrent faults requires more redundant elements.

3. THE RADIC ARCHITECTURE

RADIC (Redundant Array of Distributed Fault Tolerance

Controllers) [4] is a fully fault tolerant architecture for

message-passing parallel computers, providing high

availability for parallel applications with transparency,

decentralization, flexibility and scalability.

Our approach creates a “fully distributed controller” to

manage faults in the nodes of the parallel computer. This

controller contains two collections of dedicated

processes, named protectors (P) and observers (O)

(Figure 10), which collaborate to execute the fundamental

tasks of a transparent fault tolerant scheme based on

rollback-recovery: state saving, fault detection, recovery

and fault masking. RADIC applies the uncoordinated

checkpoint message-logging receiver-based technique for

fault tolerance. The P and O processes collaborate as a

fully distributed “parallel fault-tolerant manager” to

automatically perform all activities required to ensure the

correct ending of the parallel application in spite of

failures in some nodes of the cluster.

The set of observers (O) attached to the application

processes, manage all delivered messages between

application processes. Each observer also supports the

checkpoint operation (chk) and the message-log

mechanisms for the application process to which it is

attached. The set of protectors (T) performs the failure

detection task (Heartbeat–watchdog), operating like a

distributed storage mechanism for the checkpoints and

message-logs, and also recovering faulty processes.

The RADIC architecture acts as a layer between the fault-

probable cluster structure and the message-passing library

implementation. Such a layer performs fault-masking

(message-delivering) and fault tolerance (checkpoint,

event logs, fault detection and recovery) tasks.

 RADIC is based on rollback-recovery techniques

applying a pessimistic event-log approach. Such an

approach was chosen because it does not need any

coordinated or centralized action in order to provide its

functionality, and as a consequence does not limit or

reduce RADIC’s scalability. RADIC considers any

absence of expected communication as a fault but it can

tolerates short transient faults by retrying the

communication.

RADIC offers different protection levels, see Figure 11.

In the Basic Protection level, RADIC operates without

the need for any passive resource in order to provide its

functionalities, using some active node of the

configuration to recover a failed process which could lead

to performance degradation. This protection level is well-

suited for short-running applications, or applications that

may tolerate resource loss, such as the dynamicly load

balanced ones.

The High Availability level fits applications demanding a

non-stop behavior. At this level, RADIC provides a

flexible dynamic redundancy through a transparent

management of spare nodes. This protection level avoids

the system configuration change by incorporating

transparent management of spares nodes. Moreover, it is

possible to dynamically insert new replacement nodes

during the program execution, allowing replacement of

used spares or failed nodes. Such a feature increases the

MTTI of the parallel application once the number of idle

spare nodes remains constant, as it is shown in Figure 12.

Figure 10. Example the RADIC architecture in a cluster. The

arrows indicate the relationship between observers (O) and

protectors (T).

Faulty bit is read?

Latent error will
never be
noticed

Latent error

Bit has error
protection?

Effective error
corrected not a

problem
Effective error

Affects program
outcome?

False DUE
(Detected

Unrecoverable
Error)

Effective error

True DUE
(Detected

Unrecoverable
Error)

Failure

Affects program
outcome?

Effective error not
noticed; Not a

problem
Effective error

SDC (Silent Data
Corruption)

Failure

JCS&T Vol. 10 No. 3 October 2010

113

The Proactive migration fault tolerance is a useful

characteristic in continuous running applications, where

preventive maintenance stops are undesirable, so it

became necessary to offer a mechanism allowing the

performance of non-stop maintenance tasks [14].

The standard configuration of RADIC provides a

protection degree which can tolerates several

simultaneous non-correlated faults but if some

component of the RADIC controller fails while that

element is involved in the recovery of a fault, e.g. an

observer and its respective protector, then the standard

configuration is unable to support both faults.

 To deal with this kind of correlated-concurrent faults, the

RADIC architecture may be configured to increase the

protection degree using more than one protector (P) for

each application process, this is the Protect multiple

faults level.

The flexibility of RADIC offers the possibility of

modifying its configurations in order to accomplish the

user’s requirements. RADIC permits the user to modify

the checkpoint interval, observer/protector mapping,

number of copies of each process, number and logical

location of spare nodes, and the heartbeat/watchdog

interval [8].

The RADIC architecture has been tested using a

prototype called RADICMPI [5] and more recently a new

version has been implemented over Open MPI [7] called

RADIC/OMPI.

4. AVAILABILITY AND PERFORMANCE

Performability could be understood as the correlation

between performance and availability when a rollback-

recovery pessimistic message log-based fault tolerance

protocol is applied into a computer cluster based on the

message-passing model.

The root factors influencing the performability when

using the RADIC fault tolerance architecture include: 1)

redundant data replication (checkpoints and logs), 2)

message delivery latency, because of the use of

pessimistic logging and 3) process migration due to faulty

nodes, because this can produce performance

degradation.

Figure 13. High Availability Protection Level: Results of an N-

Body simulation after three faults are recovered in: spare nodes.

To analyze the impact of RADIC on system performance,

it is necessary to measure the generated overhead in

applications with different communication to

computation ratio, because low or high ratios have

different effects on the overhead. Execution Time also

depends on the number of faults and the protection level.

In order to analyze the influence of RADIC on

application performance, three class-D applications from

Figure 11. RADIC protection levels

(a)

(b)

Figure 12. Results of an N-Body simulation after three faults are

recovered in: (a) different nodes and (b) the same node.

•The processes of the failed node are recovered on another node and share their
computing capacity

•Execution continues with one less node and it maintains constant the number of
processes.

•Active nodes: Resources constant.

•Degradation when there is a fault

Basic protection level

•In case of fault, there are spare nodes. Allows hot swat

•Passive Nodes: There are spare nodes.

•Capacity hot swap and hot spare.

•Constant computational capacity

High availability.

•Predict failures and migrate processes before failures

•Allows maintenance.

•Use a fault injector to cause false faults to prevent, maintain or update nodes

•Nodes interchangeable: Hot swap

Proactive migration

•K tolerate concurrent faults correlated.

•Use more than one node for protection. Required to make and handle more than
one copy of the checkpoint and the log.

•Specify the degree of fault tolerance.

•Increases the fault-free overhead

Protect multiples faults

JCS&T Vol. 10 No. 3 October 2010

114

the NAS benchmarks have been used: BT, LU and SP.

These applications have been select due to their different

communication to computation ratios. To evaluate the

optimal checkpoint interval (I), we selected the

equation [10]. Where k0 is the time spent

creating and transferring checkpoint, and α is the

probability of failure. Table 1 presents the calculated

checkpoint intervals used to execute the above mentioned

class-D NAS applications. In Figure 14 we can observe

the overhead introduced by the message logging

operation in some class C and D NAS applications, with

and without RADIC and in the presence of faults.

Depending on the application’s communication to

computation ratio the message logging can or cannot be

completely overlapped with computation.

Table 1. Checkpoint intervals used to execute class-D NAS

applications. Values are expressed in minutes and megabytes.

Applications:

BT, LU, SP.

Nodes Running

time (m)

Process

size (MB)

Checkpoint

interval (m)

BT D 16 43,79 1980 21,58

BT D 25 29,58 1400 16,28

SP D 16 55,01 1715 19,17

SP D 25 40,82 1251 14,90

LU D 8 103,84 1747 19,46

LU D 16 40,69 1061 13,13

LU D 32 20,63 722 9,91

Figure 14. Execution time of class C and D NAS applications

while using Open MPI with and without RADIC fault tolerance

5. SOFT ERROR AND DATA

CONSISTENCY

Computer chip implementation technologies evolving to

obtain more performance are increasing the probability of

transient faults. The transient faults are those that may

occur once and will not happen again the same way in the

lifetime of that system. Transient faults in computer

systems may occur in processor, memory, internal buses

and devices, often resulting in an inversion in the state of

a bit (single bit flip) at the fault location. Transient faults

in computer systems are commonly the effect of cosmic

radiation, high operating temperatures and variations in

the power supply subsystem.

Transient faults may cause an application running in a

computer system to be removed from execution (fail-

stop) by the operating system when the change produced

by the fault is detected by the processor or the operating

system based on bad behavior of the application. In this

case the transient fault would cause an application to

misbehave (e.g. write into an invalid memory position;

attempt to execute an inexistent instruction) which will

then be abruptly interrupted by the operating system fail-

stop mechanism. However, perhaps the biggest risk for

applications is that transient faults provoke undetected

data corruption and change the final result of the

application, without anyone knowing. This data

corruption happens when the transient fault bit-flip

generates an incorrect final result that might not ever be

noticed [12].

The risk of having transient faults affecting computation

resulted in the need for researchers to have tools to

simulate those faults to study their effects and also to test

their theories and proposals. Since transient faults occur

in a very unpredictable way, an environment with

transient bit-level fault injection capabilities is needed to

study the effects of these faults in the computer hardware

stack (processor, buses, memory, etc) as well as the

software stack (operating systems, middleware and

applications)

As was mentioned in the introduction, we have developed

an environment with single bit-level register level fault

injection capabilities, based on COTSon [1].

The fault injection “campaign” description used in the

environment only needs the value of three parameters to

inject fault into a computer system simulation: a fault

trigger, a fault location and a fault operation.

It is important to have an environment able to perform

fault injection experiments in order to:

 Evaluate the effects of single bit flip transient faults

on processor registers and memory on applications;

 Analyze application robustness against single bit flip

transient faults on processor registers and memory;

 Test fault detection mechanisms: Be able to analyze

the effectiveness of a fault injection through the

application fault detection mechanism;

Our environment uses a full system simulator and allows

both deterministic and non-deterministic fault injections

campaigns and generates enough information about the

fault injection to help in the further analysis necessary to

build a better understanding of the effects of a transient

fault in applications robustness and behavior.

By selecting a full system simulator as an environment to

inject faults we also could achieve both precision and

accuracy by having full control of the simulated computer

processor.

With our fault injection environment we achieve a very

transparent fault injection environment, as dealing with

fault injection it isn't necessary to change the simulated

computer operating system or the tested application.

With the developed environment, we were able to show

evidence of the influence of compiler optimizations in the

robustness of an application and of a fault detection

mechanism against transient faults (Figure 15).

JCS&T Vol. 10 No. 3 October 2010

115

Figure 15. Some plot of the developed environment showing the

impact generated in the application provoked injecting transient

faults in different registers

6. CONCLUSIONS

The growth in HPC system scale poses a challenge in the

design of automatic and transparent strategies and

mechanisms to perform fault protection, detection and

recovery. To evaluate the performance of these systems

in the presence of faults, performability, the property of a

computer system to deliver the performance required

even though there are faults, is considered a realistic,

complete and accurate index. RADIC, a fault tolerant

architecture with different protection levels, can provide

high availability with transparency, decentralization,

flexibility and scalability for message-passing systems.

The flexibility of RADIC offers the possibility of

modifying its configurations in order to accomplish the

user’s requirements.

An increasing risk for applications is that transient faults,

through silent errors, provoke undetected data corruption

and change the final result of the application, without

anyone knowing. We have developed a fault injection

system for evaluating the effects of single transient faults

in an application, analyzing the robustness of applications

against these transient faults and validating new fault

detection mechanisms and strategies.

Acknowledgments

This work has been possible thanks to the Fault

Tolerance group of UAB, composed of Angelo Duarte,

Guna Santos, Leonardo Fialho and Joao Gramacho.

7. REFERENCES

1. Argollo, E., Falcón, A., Faraboschi, P., Monchiero,

M., & Ortega, D.: COTSon: infrastructure for full

system simulation. SIGOPS Oper. Syst. Rev., Vol. 43

(Ed 1), pp. 52-61, 2009.

2. Bouteiller A., Herault T., Krawezik G., Lemarinier P.,

and Cappello F.: MPICH-V Project: A Multiprotocol

Automatic Fault-Tolerant MPI. Int. J. High Perform.

Comput. Appl. Vol. 20, no.3, pp. 319-333, 2006.

3. Chakravorty, S., Mendes, C. and Kale, L.V. Proactive

fault tolerance in large systems. HPCRI Workshop in

conjunction with HPCA 2005.pp 363-372, 2005.

4. Duarte, A., Rexachs, D., Luque, E.: Increasing the

cluster availability using RADIC. Cluster Computing,

2006 IEEE International Conference on, pp. 1-8, 2006.

5. Duarte, A., Rexachs, D., Luque, E.: An Intelligent

Management of Fault Tolerance in Cluster Using

RADICMPI. LNCS Vol. 4192, Recent Advances in

Parallel Virtual Machine and Message Passing

Interface, pp. 150-157, 2006.

6. Elnozahy E., Alvisi L., Wang Y., and Johnson D.: A

Survey of Rollback-Recovery Protocols in Message

Passing Systems. ACM Computing Surveys, vol. 34,

no. 3, pp. 375-408, 2002.

7. Fialho L., Santos G., Duarte, A., Rexachs, D., Luque,

E.: Challenges and Issues of the Integration of RADIC

into Open MPI. LNCS Vol. 5759, Recent Advances in

Parallel Virtual Machine and Message Passing

Interface, pp. 73-83, 2009.

8. Fialho L., Duarte, A., Rexachs, D., Luque, E.:

Outcomes of the Fault Tolerance Configuration.

CACIC 2009.

9. Engelmann C. and Geist A. Development of naturally

fault tolerant algorithms for computing on 100,000

processors. http://www.csm.ornl.gov/~geist. 2002

10. Gropp, W., Lusk, E.: Fault Tolerance in Message

Passing Interface Programs. Int. J. High Perform.

Comput. Appl. 18(3), pp. 363–372, 2004.

11. Kalaiselvi S. and Rajaraman V.: A survey of

checkpointing algorithms for parallel and distributed

computers. Sadhana, vol. 25, no. 5, pp. 489-510, 2000.

12. Mukherjee, S. S., Emer, J., & Reinhardt, S. K.. The

Soft Error Problem: An Architectural Perspective.

HPCA '05: Proceedings of the 11th International

Symposium on High-Performance Computer

Architecture, pp. 243-247, 2005.

13. Nagaraja, K., Gama, G., Bianchini, R., Martin, R. P.,

Meira Jr., W., and Nguyen. : Quantifying the

Performability of Cluster-Based Services. IEEE Trans.

Parallel Distrib. Syst. 16, 5, pp. 456-467, 2005.

14. Santos G., Duarte, A., Rexachs, D., Luque, E.:

Providing Non-stop Service for Message-Passing

Based Parallel Applications with RADIC. LNCS Vol.

5168, Euro-Par 2008, pp. 58-67, 2008.

Without compiler

optimization

With compiler

optimization

Correct App DetectedSys Detected TimeoutIncorrect

72

43

1 4

162 164

4

36

164

184
166 164

256

4

163 163

90

8

92

110

49

39

71

64

91

108
120

64 64

256 256

4

176

142
128

53

26
1

144
132

29 29

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R15 R14 R13 R12 R11 R10 R9 R8 RDI RSI RBP RSP RBX RDX RCX RAX

4

245

88

47

29

30

256 256 256 256 256 256 256 256 256 256

7

256 256

139

256

179

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R15 R14 R13 R12 R11 R10 R9 R8 RDI RSI RBP RSP RBX RDX RCX RAX

JCS&T Vol. 10 No. 3 October 2010

116

	invited: Invited Paper:

