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The covariant propagator of a fermion with intrinsic magnetic moment interacting with a uniform
external magnetic field is presented for finite temperature and baryonic density. The case of a scalar boson
is also considered. The final expressions are given in terms of a four-dimensional momentum
representation. These results, which take account of the full effect of the magnetic field, are used to
evaluate the modification of the pion mass at zero temperature as a function of the density and the magnetic
intensity. For this purpose a self-consistent calculation, including one- and two-pion vertices, is employed.
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I. INTRODUCTION

The dynamics of matter subject to strong magnetic fields
has been widely studied in the past [1], and it has received
renewed interest due to the analysis of different exper-
imental situations [2].
In recent years, the significative role played by the

intrinsic magnetic moments of the hadrons when the ther-
modynamical behavior of dense nuclear matter under strong
magnetic fields is analyzed has been pointed out [3–7].
This conclusion can be made extensive, for instance, to

the study of matter created in heavy ion collisions, where
very intense magnetic fields have been predicted [8–10].
Experimental evidence of this fact is the preferential
emission of charged particles along the direction of the
magnetic field for noncentral heavy ion collisions, due to
magnetic intensities eB ∼ 102 MeV2 [8].
In a different scenario, very dense hadronic matter under

strong magnetic fields could be found in certain compact
stars, which have generally been included within the
magnetar model [11,12]. The sustained x-ray luminosity
in the soft (0.5–10 keV) or hard (50–200 keV) spectrum, as
well as the bursting activity of these objects, are attributed
to the dissipation and decay of very strong magnetic fields.
The intensity of these fields has been estimated around
1015 G at the star surface, but it could reach much higher
values in the dense interior of the star. The availability of an
increasing amount of precision data opens the question on
how well the current theoretical description of hadronic
matter can fit this empirical evidence.
A successful description of the dense hadronic environ-

ment has been given by a covariant model of the hadronic
interactionknownasquantumhadrodynamics (QHD) [13]. It
has been used to study the structure of neutron stars, and
particularly to analyze hadronic matter in the presence of an
external magnetic field [3,4,6,7,14–16]. The versatility of
this formulation allows the inclusion of the intrinsicmagnetic
moments in a covariant way. Due to the strength of the

baryon-meson couplings, the mean field approximation
(MFA) is usually employed.Within this approach, themeson
fields are replaced by their expectationvalues andassimilated
into a quasiparticle picture of the baryons. Finally, the meson
mean values are obtained by solving the classical meson
equations, taking as sources the baryonic currents. This
scheme is conceptually clear and easy to implement.
The propagators of charged particles in external mag-

netic fields have been analyzed from different points of
view [17–21]. A first attempt to include the full effect of the
intrinsic magnetic moments of a Dirac particle propagating
in a dense hadronic environment has been presented in
Ref. [21]. However, it uses a mixed representation, where
position and momentum variables are bound together. The
coherence of the approach was tested by evaluating typical
currents and densities in nuclear matter.
In the present work, we try to improve that formalism by

presenting a representation in terms of only momentum
coordinates. Obviously, this fact makes easier the applica-
tion of diagrammatic procedures. In this sense, our results
could be useful to complement recent studies [22–24].
The propagator of Dirac particles subject to a uniform

external magnetic field, which includes the full effect of its
magnetic moments, is used to evaluate corrections to the
pion propagator in a dense nuclear environment. In
particular, we evaluate the meson polarization in conditions
appropriate to defining the effective pion mass. We analyze
a wide range of densities 0 < nB < 3n0, with n0 being the
saturation density of nuclear matter, and we concentrate on
very strong magnetic fields, B ≥ 1017 G. Two different
isospin compositions of nuclear matter are considered, pure
neutron matter and symmetric nuclear matter.
The behavior of the pion polarization, and particularly of

its effective mass, has recently been studied for low matter
density and a wide range of magnetic intensities [25,26].
However, the intrinsic nucleon magnetic moments are not
considered in these works. In contrast, in our analysis, the
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variation of the neutral pion mass in pure neutron matter is
an effect exclusively due to the neutron magnetic moment.
This work is organized as follows: In the next section, a

summary of the findings of Ref. [21] is presented, and further
development is made to derive a four-momentum represen-
tation for the propagator. Sincewe are interested in evaluating
the effects on the pion propagation, we give a brief overview
of the Green function for a charged spin-zero meson in
Sec. III. The evaluation of the in-medium pion polarization
and the definition of its effectivemass are given inSec. IV.We
devote Sec. V to the discussion of the results. Finally, the
conclusions are shown in Sec. VI. Certain details of the
mathematical elaboration are transferred to the appendixes.

II. IN-MEDIUM PROPAGATOR OF A DIRAC
FIELD WITH INTRINSIC MAGNETIC MOMENT

A preliminary version of the results of this section was
presented in Ref. [21]. For the sake of completeness, we
give here an overview of the procedure.
The interaction of a spin-1=2 fermion with a uniform

magnetic field is described by the Lagrangian density

L ¼ Ψ̄
�
γμði∂μ − qAμÞ −mþ κ

2
σμνF μν

�
Ψ; ð1Þ

where F μν ¼ ∂μAν − ∂νAμ and σμν ¼ i½γμ; γν�=2. For sim-
plicity, the case of a uniform external magnetic field of
magnitude B along the z-axis is considered, for which
Aμ ¼ gμ2Bx.
For charged particles of positive energies Ens, an exact

solution in mixed position and momentum coordinates can
be written as

ϕðþÞ
nspypzðξ; y; zÞ ¼ eiðpyyþpzzÞe−ξ2=2unspz

ðξÞ;
where the index s ¼ 1, −1 stands for the spin projection
along the magnetic field direction, and n ≥ 1 denotes the
quantized Landau levels. We have also used

unspz
ðξÞ ¼ Nns

0
BBBBB@

HnðξÞ
2nspz

ffiffiffiffiffi
qB

p
i

ðΔnþsmÞðEnsþsΔn−κBÞHn−1ðξÞ
pz

EnsþsΔn−κB
HnðξÞ

− 2ns
ffiffiffiffiffi
qB

p
i

Δnþsm Hn−1ðξÞ

1
CCCCCA ð2Þ

and

ξ ¼ ð−py þ qBxÞ=
ffiffiffiffiffiffi
qB

p
; ð3Þ

Δn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2nqB

q
; ð4Þ

Ens ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðΔn − sκBÞ2

q
; ð5Þ

N2
ns ¼

ffiffiffiffiffiffiffiffiffiffiffi
qB=π

p
ð2πÞ22nþ2n!

ðΔn þ smÞðEns þ sΔn − κBÞ
mðΔn − sκBÞ ; ð6Þ

Hn stands for the Hermite polynomials.

The minimum energy eigenstate corresponds to

ϕðþÞ
0pypz

ðξ; y; zÞ ¼ eiðpyyþpzzÞe−ξ2=2u0pz
, with

u0pz
¼ N0

0
BBB@

1

0
pz

E0þm−κB

0

1
CCCA ð7Þ

and

E0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðm − κBÞ2

q
; ð8Þ

N2
0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
qB=π

p
2ð2πÞ2

ðE0 þm − κBÞ
ðm − κBÞ : ð9Þ

The antiparticle states correspond to the eigenvalues
−Ens and have eigenfunctions

ϕð−Þ
nspypzðξ; y; zÞ ¼ e−iðpyyþpzzÞe−η2=2vnspz

ðηÞ;
with

vnspz
ðηÞ ¼ Nns

0
BBBBBB@

pz
EnsþsΔn−κB

HnðηÞ
2ns

ffiffiffiffiffi
qB

p
i

Δnþsm Hn−1ðηÞ
HnðηÞ

−2nspz
ffiffiffiffiffi
qB

p
i

ðΔnþsmÞðEnsþsΔn−κBÞHn−1ðηÞ

1
CCCCCCA
; ð10Þ

where η ¼ ðpy þ qBxÞ= ffiffiffiffiffiffi
qB

p
and n ≥ 1. The special case

n ¼ 0 has energy −E0 and wave function ϕð−Þ
0pypz

ðη; y; zÞ ¼
e−iðpyyþpzzÞe−η2=2v0pz

, with

v0pz
¼ N0

0
BBB@

pz
E0þm−κB

0

1

0

1
CCCA: ð11Þ

For neutral particles (q ¼ 0), the results are simpler. The
particle states are described by

ϕðþÞ
p⃗s ðr⃗Þ ¼ eip⃗:r⃗up⃗s;

with

up⃗s ¼ Np⃗s

0
BBBBB@

1
−sðpxþipyÞpz

ðΔþsmÞðEp⃗sþsΔ−κBÞ
pz

Ep⃗sþsΔ−κB

sðpxþipyÞ
Δþsm

1
CCCCCA ð12Þ

and

Ep⃗s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
z þ ðΔ − sκBÞ2

q
; ð13Þ
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Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

x þ p2
y

q
; ð14Þ

N2
p⃗s ¼

1

4ð2πÞ3
ðΔþ smÞðEp⃗s þ sΔ − κBÞ

mðΔ − sκBÞ : ð15Þ

On the other hand, the antiparticle states have energies

−Ep⃗s, and eigenfunctions ϕð−Þ
p⃗s ðr⃗Þ ¼ e−ip⃗:r⃗vp⃗s, with

vp⃗s ¼ Np⃗s

0
BBBBB@

pz
Ep⃗sþsΔ−κB

sðpxþipyÞ
Δþsm

1
−sðpxþipyÞpz

ðΔþsmÞðEp⃗sþsΔ−κBÞ

1
CCCCCA: ð16Þ

In the next step, we make a canonical expansion of the
fermion quantum fields using the eigenfunctions just
described. These fields are used to evaluate the in-medium
causal propagator [18]

iGαβðx0; xÞ ¼ hTΨαðx0ÞΨ̄βðxÞi:

Here the angular brackets must be regarded as a statistical
mean value, as obtained, for instance, by evaluating the
trace with the density matrix of the system.
Using such a procedure, a mixed-coordinates represen-

tation has been obtained for the covariant propagator of a
charged Dirac particle [21]:

Gαβðt0; r⃗; t; r⃗Þ ¼
ffiffiffiffiffiffi
qB
π

r Z
dp0dpydpz

ð2πÞ3 e−ip0ðt0−tÞei½pyðy0−yÞþpzðz0−zÞ�e−ðξ02þξ2Þ=2

×

�
Λ0
αβ

�
1

p2
0 − E2

0 þ iϵ
þ 2πinFðp0Þδðp2

0 − E2
0Þ
�
þ
X
n;s

Δn þ sm
2nþ1n!Δn

Λns
αβðξ0; ξÞ

×

�
1

p2
0 − E2

ns þ iϵ
þ 2πinFðp0Þδðp2

0 − E2
nsÞ

��
; ð17Þ

where

Λ0 ¼ ðuþm − κBÞΠðþÞ;

Λns ¼
�
ðuþ sΔn − κBÞHnðξ0Þ þ i

m − sΔnffiffiffiffiffiffi
qB

p ðu − sΔn þ κBÞγ1Hn−1ðξ0Þ
��

ΠðþÞHnðξÞ þ i
m − sΔnffiffiffiffiffiffi

qB
p γ1Πð−ÞHn−1ðξÞ

�
;

and u ¼ p0γ
0 − pzγ

3, Πð�Þ ¼ ð1� iγ1γ2Þ=2, ξ0 ¼ ð−py þ qBx0Þ= ffiffiffiffiffiffi
qB

p
.

For the neutral fermions, it is

Gαβðx0; xÞ ¼
X
s

Z
dp4

ð2πÞ4 e
−ipμðxμ−xμÞΛs

αβ

�
1

p2
0 − E2

p⃗s þ iϵ
þ 2πinFðp0Þδðp2

0 − E2
p⃗sÞ

�
; ð18Þ

where

Λs ¼ s
2Δ

iγ1γ2½uþ iγ1γ2ðsΔ − κBÞ�ðvþmþ isΔγ1γ2Þ; ð19Þ

and the notation v ¼ −pxγ
1 − pyγ

2 is introduced.
The formal difference between the results for the neutral

and charged fermions must be noted. In the first case, a pure
momentum representation can be easily extracted from
Eq. (18). This is not the case for Eq. (17), from which a
mixed-coordinate ðp0; py; pz; x; x0Þ representation can be
deduced at most. This fact is related to the particular gauge
chosen for the electromagnetic field. Obviously, this is
an undesirable flaw for some specific applications—for
instance, diagrammatic expansions.
The problem of the gauge invariance of fermion propa-

gators has been discussed a long time ago [17]. By

following such studies, a transformation is applied to
Eq. (17) which leads to the following decomposition:

Gðx0; xÞ ¼ eiΦ
Z

d4p
ð2πÞ4 e

−ipμðx0μ−xμÞ
�
G0ðpÞ þ

X
n;s

Gn;sðpÞ
�
;

ð20Þ
with

G0ðpÞ¼2e−p
2⊥=qBΛ0

�
1

p2
0−E2

0þiϵ
þ2πinFðp0Þδðp2

0−E2
0Þ
�
;

ð21Þ
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GnsðpÞ ¼ ð−1Þne−p2⊥=qB
Δn þ sm

Δn

�
ðu − κBþ sΔnÞΠðþÞLnð2p2⊥=qBÞ − ðuþ κB − sΔnÞΠð−Þ sΔn −m

sΔn þm
Ln−1ð2p2⊥=qBÞ

þ ½uþ iγ1γ2ðsΔn − κBÞ�iγ1γ2v sΔn −m
2p2⊥

½Lnð2p2⊥=qBÞ − Ln−1ð2p2⊥=qBÞ�
�

×

�
1

p2
0 − E2

ns þ iϵ
þ 2πinFðp0Þδðp2

0 − E2
nsÞ

�
; ð22Þ

here Lm stands for the Laguerre polynomial of order m,
and p2⊥ ¼ p2

x þ p2
y is used. The phase factor Φ ¼

qBðxþ x0Þðy0 − yÞ=2 embodies the gauge fixing. For
mathematical details, see Appendix A.

III. IN-MEDIUM PROPAGATOR OF A CHARGED
SCALAR BOSE FIELD

The covariant propagator of a charged scalar field in the
presence of an external magnetic field has been studied in the
past, including the method of eigenfunctions expansion [19].
We present here a procedure which renders the propagator
into a four-dimensional momentum representation.
The meson field ϕðxÞ interacting with a electromagnetic

field AμðxÞ is described by the Lagrangian

L ¼ ð∂μ − ieAμÞφ†ð∂μ þ ieAμÞφ −m2φ†φ:

We choose the gauge as in Sec. II. The eigenfunctions are

φnðxÞ ¼ N e−iðωnt−pyy−pzzÞe−ξ2=2HnðξÞ;

with ωn¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þp2

zþ2ðnþ1ÞqB
p

, ξ ¼ ffiffiffiffiffiffi
qB

p ðx − py=qBÞ,
and N 2 ¼ ffiffiffiffiffiffiffiffiffiffiffi

qB=π
p

=2nn! An expansion of the quantum
field is proposed as

ϕðxÞ ¼
X
n;l

Z
dpz

2πωn
½φnlanlðpzÞ þ φ�

nlb
†
nlðpzÞ�;

with canonical commutation relations for the creation
and destruction operators. Using the standard definition
of the propagator iΔðx; x0Þ ¼ hTϕðxÞϕ†ðx0Þi, where angu-
lar brackets stand for a statistical expectation value, we
obtain

Δðx; x0Þ ¼
X
n

N 2

Z
dp0dpydpz

ð2πÞ3 e−ip0ðt−t0Þþipyðy−y0Þþipzðz−z0ÞHð
nξÞHð

nξ0Þe−ðξ2þξ02Þ=2
�

1

p2
0 − ω2

n þ iε
þ 2πiδðp2

0 − ω2
nÞnBðp0Þ

�
;

where nB is the Bose distribution function, and we use the identity

1

2ωn
½Θðt0 − tÞeiωnðt−t0Þ þ Θðt − t0Þe−iωnðt−t0Þ� ¼ i

2π

Z
dp0

2π

e−ip0ðt−t0Þ

p2
0 − ω2

n þ iε

in order to unify particle and antiparticle notation.
In the first place, we perform the integration over py,Z

dpyN 2eipyðy−y0Þe−ðξ2þξ02Þ=2Hð
nξÞHð

nξ0Þ ¼ qBeiΦe−qBR
2=4LnðqBR2=2Þ;

with the help of Eq. 7.377 of Ref. [27], where R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
is used. The right-hand side can be rewritten in

terms of a bidimensional momentum integral by using Eq. (A5). Hence, we finally obtain

Δðx; x0Þ ¼ eiΦ
Z

d4p
ð2πÞ4 e

−ipμðx−x0ÞμΔðpÞ;

ΔðpÞ ¼ 2
X
n

ð−1Þne−p2⊥=qBLnð2p2⊥=qBÞ
�

1

p2
0 − ω2

n þ iε
þ 2πiδðp2

0 − ω2
nÞnBðp0Þ

�
:

The quantities Φ and p⊥ were defined at the end of Sec. II.

IV. PION EFFECTIVE MASS IN THE NUCLEAR MEDIUM UNDER A UNIFORM MAGNETIC FIELD

In this section, we consider the hadronic interaction in the presence of a uniform external magnetic field. It is described by
a QHD model, where baryons interact with pions and neutral mesons σ and ω. The Langragian density is
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L ¼
X
a¼n;p

Ψ̄a

�
γμ

�
i∂μ − qaAμ þ gwωμ −

gA
2fπ

γ5τ · ∂μϕ

−
1

4f2π
τ · ϕ × ∂μϕ

�
−m0 þ gsσ þ κ

2
σμνF μν

�
Ψa

−
1

4
F μνF μν þ 1

2
ð∂μσ∂μσ −m2

σσ
2Þ − 1

4
ΩμνΩμν

þ 1

2
m2

ωωμω
μ þ 1

2
∂μϕ

0∂μϕ0

þ ð∂μ − ieAμÞϕ−ð∂μ þ ieAμÞϕþ −
1

2
m2

πϕ · ϕ; ð23Þ

where Ωμν ¼ ∂μων − ∂νωμ, and only protons and neutrons
have been included. In this approach, the fundamental state
of matter is given by a MFA, which is equivalent to
including the tadpole diagram [see Fig. 1(a)] in a self-
consistent solution but neglecting divergent contributions
coming from the Dirac sea. At this step, it is assumed that
meson propagation is not modified by the hadronic
interaction. The effect of the magnetic field, instead, is
fully included for both meson and nucleon propagators.
This means that fermionic lines in the diagram of Fig. 1(a)
correspond to either Eqs. (18)–(19) or Eqs. (21)–(22).
It can be verified that pions do not contribute to the

tadpole diagram, since the pion-nucleon vertices depend on
the transferred pion momentum. Furthermore, the neutral

mesons σ, ω, and π0 are not affected directly by the
magnetic field.
It is well known that in QHD models, the MFA leads

to a quasiparticle picture for nucleons, where the mass and
energy spectra are modified, according to m ¼ m0 − gsσ0,
p0 ¼ gww0 � E, with E being one of the eigenvalues
shown in Eqs. (5), (8), or (13). The quantities σ0, w0

correspond to the in-medium expectation values of the σ
and timelike component of ω mesons [13], w0 ¼ gωnB=m2

ω

and σ0 ¼ gσns=m2
σ. The baryonic number (nB) and scalar

(ns) densities can be decomposed into their neutron and
proton components:

nðnÞB ¼
X
s

Z
dp3

ð2πÞ3 ½nFðEp⃗sÞ − nFð−Ep⃗sÞ�;

nðpÞB ¼ qB
2π2

Z
dpz

�
½nFðE0Þ − nFð−E0Þ�

þ
X
n;s

½nFðEnsÞ − nFð−EnsÞ�
�
;

nðnÞs ¼
X
s

Z
dp3

ð2πÞ3
Δþ sκnB
Ep⃗sΔ

½nFðEp⃗sÞ þ nFð−Ep⃗sÞ�;

nðnÞs ¼ qB
2π2

Z
dpz

�
mþ κpB

E0

½nFðE0Þ þ nFð−E0Þ�

þm
X
n;s

Δn þ sκpB

EnsΔn
½nFðEnsÞ þ nFð−EnsÞ�

�
:

Therefore, at the end of the calculations, we formally
recover similar expressions for the nucleon propagators as
given in Sec. II, but with the following modifications:
(i) the nucleon vacuum mass is replaced by the in-medium
effective mass, and (ii) the variable p0 must be replaced by
~p0 ¼ p0 − gww. For practical applications, the last point is
equivalent to replacing the thermodynamical chemical
potential μ with the effective potential ~μ ¼ μ − gww.
In the next step, we study the effects of the hadronic

interaction on the meson properties. In particular, we
consider the modification of the pion mass. For this purpose,
we evaluate the pion polarization insertion due to Figs. 1(b)
and 1(c) corresponding to the one-loop approximation. The
diagram in Fig. 1(b) comes from the Weinberg-Tomozawa
term and corresponds to a first-order correction.
It gives nonzero contributions only for the nondiagonal

channel (1,2) of the Hermitian pion fields

ΠWT
ab ðpÞ ¼ −

ε3ab
2f2π

pμ

X
c

τcc3

Z
d4q
ð2πÞ4 Trfγ

μGðcÞðqÞg; ð24Þ

where the sum runs over protons (c ¼ 1) and neutrons
(c ¼ 2). Using the nucleon propagators constructed in the
MFA and specializing for the conditions of interest for our
calculations, we finally obtain

(c)(b)

xxxx

(a)

FIG. 1. The diagrams included in our Dyson-Schwinger cal-
culations. Solid lines represent fermion propagators, while
dashed lines represent meson propagators. (a) The tadpole
diagram contributing to the mean field approach to the nucleon
self-energy. (b) The Weinberg-Tomozawa contribution to the
pion polarization. (c) The one-pion exchange diagram for the
pion polarization.
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ΠWT
� ðp0; p ¼ 0Þ ¼ � p0

2f2π
ðnðnÞB − nðpÞB Þ; ð25Þ

whereas ΠWT
0 ðpÞ ¼ 0.

The diagram in Fig. 1(c) corresponds to the pseudovector
one-pion vertex (OPV); it is a second order correction,

iΠOPVðpÞ ¼
�
gA
2fπ

�
2

pμpν

Z
d4q
ð2πÞ4

× Trfγμγ5GðaÞðqÞγνγ5GðbÞðq − pÞg: ð26Þ

It is understood that for the neutral pion, a sum over a ¼ b
must be done; for the positively charged pion, the sum is
a ¼ p, b ¼ n; and finally, a ¼ n, b ¼ p corresponds to the
negatively charged pion. Explicit expressions for the polar-
izations ΠOPV

0 , ΠOPV
� evaluated at p ¼ 0 are shown in

Appendix B.
In a Dyson-Schwinger approach, the poles of the pion

propagator are modified by the polarization insertion. For
charged pions and for each Landau level, they are given by
p2
0 − ω2

n − Π�ðpÞ ¼ 0. For neutral pions instead, they are
defined by p2

0 − ðm2
π þ p2Þ − Π0ðpÞ ¼ 0. Hence, the in-

medium effective mass is defined as the solutions of the
following equation for p0:

p2
0 −m2

π − Πðp0; p ¼ 0Þ ¼ 0: ð27Þ

It must be noted that the term 2nqB coming from the
quantized Landau states for the charged pions has not been
included in this definition.
As was already mentioned, for charged pions the

polarization insertion in Eq. (27) is a sum ΠWT
� þ ΠOPV

� ,
whereas for the neutral pion there is only one contribu-
tion, ΠOPV

0 .

V. RESULTS AND DISCUSSION

In this section, we solve Eq. (27) for different situations
of physical interest. We consider here very strong magnetic
fields 1016–1019 G, and matter at zero temperature and
baryonic densities below 0.45 fm−3. We also take the
isospin composition of matter as a variable and examine
two different situations: (i) symmetric nuclear matter

nðpÞB ¼ nðnÞB , and (ii) pure neutron matter nðpÞB ¼ 0. In the
first case, there is no contribution from ΠWT

� , as can be seen
from Eq. (25).
In first place, we take a look of the thermodynamical

state of matter at zero temperature, within the MFA. The
results obtained are used to evaluate the medium-dependent
parameters of the fermionic propagators. As a second step,
the polarization insertion for pions is constructed and its
effective mass is examined.

A. Thermodynamics of the magnetized
hadronic medium

For a given magnetic intensity, baryonic density, and
isospin composition, the equilibrium state of matter cor-
responds to a minimum of the energy of the system. In this
state, each isospin component acquires a global spin
polarization, induced by the external magnetic field.
Furthermore, the system exhibits a weak magnetization.
In this section, we examine the thermodynamical properties
of the equilibrium state.
In Fig. 2, we present the energy per particle (with

subtraction of the nucleon mass m0) as a function of the
density for several magnetic intensities. In symmetric
matter, a minimum or saturation point is found, whose
energy decreases with the intensity of the magnetic field.
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FIG. 2. The energy per particle (with the rest mass subtracted)
for (a) symmetric nuclear matter and (b) pure neutron matter, as a
function of the density for different magnetic intensities.
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The fact that nuclear matter is more strongly bound as the
magnitude of the external field grows has been remarked on
in different studies [3,5–7]. For pure neutron matter,
instead, a monotonous increase is found. It deserves to
be mentioned that at low densities, neutron matter becomes
bound, a feature emphasized as B increases [4,5].
Next, in Fig. 3, we analyze the spin polarization of each

isospin component as a function of the density. The

quantity WðaÞ ¼ ðnðaÞup − nðaÞdownÞ=nðaÞB , with a ¼ p, n, gives
a statistical measure of the fraction of particles with spin
polarized in the direction of the field or in opposition to it.
For B > 1016 G, both isospin components are completely
polarized at very low densities. There is an abrupt change of
polarization for the weaker intensities, while the plateau of

complete polarization is extended in density as the external
field grows. In this sense, the response of the proton
component seems to be more intense than the neutron
one. As a special situation, it can be seen that the curve
corresponding toWðpÞ for symmetric matter at B ¼ 1018 G
shows several irregularities due to the thresholds in the
occupation of different Landau levels. The case B ¼
1016 G has not been included in Figs. 2 and 3, since it
is indistinguishable from the B ¼ 1017 G curve for the
scale shown. In both figures, there is an apparent difference
in the qualitative behavior of the B ¼ 5 × 1018 G curves,
which can be attributed to the intrinsic magnetic moments
[3,6,7], insofar as κaB ∼ 1.
The effective chemical potential for neutrons and protons

as a function of density is exhibited in Fig. 4. It can be
appreciated that ~μ is a decreasing function, even though the
thermodynamical potential μ increases monotonously, as it
corresponds to a thermodynamical equilibrium state. This
is a consequence of the faster growth of the mean field
value ω0. Only the case B ¼ 5 × 1018 G is shown in this
figure, but a similar trend is obtained for other intensities.
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FIG. 3. The degree of polarization in (a) symmetric nuclear
matter and (b) pure neutron matter, as a function of the density for
different magnetic intensities. In the upper panel, black lines
correspond to the proton component, and gray lines correspond to
the neutron case.
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FIG. 4. The effective chemical potential as a function of the

density for B ¼ 5 × 1018 G. Here w ¼ ðnðnÞB − nðpÞB Þ=ðnðnÞB þ
nðpÞB Þ is used. Solid lines correspond to symmetric nuclear matter,
and dashed lines correspond to pure neutron matter. In the first
case, a black line is used for protons, and a gray line is used for
neutrons.
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The equation of state of hadronic matter in the presence
of an external uniform magnetic field has been widely
discussed. In particular, Ref. [15] makes an exhaustive
analysis of the effects of the anomalous magnetic moments
(AMMs) in matter composed of nucleons, light mesons,
and electrons. One of the results shown there is the
relevance of the AMMs for sufficiently high magnetic
intensities. These results apparently contradict the conclu-
sions of Ref. [28]. However, a direct comparison is not fair
for several reasons: (i) A system of structureless charged
fermions interacting solely with the electromagnetic field is
considered in Ref. [28]. In such an approach, the AMMs
are obtained from an expansion of the fermion self-energy.
In hadronic physics instead, the AMMs are taken as
constants determined mainly by the quark structure of
hadrons. Hence, even neutral fermions exhibit nonzero
AMMs. (ii) The equation of state is evaluated in Ref. [28]
for only one species of charged fermions. This description
can hardly be applied to realistic situations of hadronic
physics. By way of illustration, neutron star matter can be
considered. In such a case, the Coulomb repulsion among
charged baryons is modified by the interaction with neutral
ones. Furthermore, charged leptons are necessary to locally
fulfill the requirement of charge neutrality. (iii) The explicit
calculations of the equation of state shown in Ref. [28] are
particularly misleading for hadronic physics, as the set of
numerical values used there causes a loss of generality. For
instance, the fermion mass fixed at m ¼ 0.5 MeV is almost
irrelevant for baryons, and consequently the chemical
potential μ ¼ 10 MeV≃ 0.05 fm−1 corresponds, at zero
temperature, to unphysical high densities (see Fig. 4).

B. In-medium pionic mass

The effective masses of the baryons and their chemical
potentials obtained in the MFA are taken as input for the
propagators (18)–(19) and (20)–(22). In turn, they are used
to evaluate the polarization insertions (24) and (26) as
functions of the density and the magnetic intensity.
In Figs. 5 and 6, the solutions of Eq. (27) are examined in

terms of the particle density for several field intensities. The
case B ¼ 1019 G is also included, because all the effects
discussed are enlarged for this extremely strong field. Itmust
be emphasized that we do not include vacuum corrections,
and hadrons are regarded as elementary degrees of freedom.
The density dependence of the pion mass in neutral

matter is exhibited in Fig. 5. The charged pions [Fig. 5(a)]
receive contributions from ΠWT

� , and from the OPV
between neutrons and protons in the Fermi sea. The first
term does not depend explicitly on the magnetic intensity,
but only through the particle density. Therefore, the same
curve corresponds to different values of B (dark lines).
In fact, it can be shown that neglecting corrections from
the OPV, the effective pion masses can be written as
m�

�=mπ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðarÞ2

p
� ar, where a ¼ n0=4f2πmπ and

the relative density r ¼ nB=n0 is introduced. When the

full term is considered, a weak dependence on B emerges.
Only for the strongest intensity B ¼ 1019 G (gray lines) do
the differences become appreciable.
The neutral pion receives a contribution only from the

neutrons throughΠOPV
0 .Thecompositionof this termis shown

in detail in Eqs. (B2)–(B4). The factor Θð~μn − jMsjÞ dis-
favors the spin-up contribution by reducing the integration
domain of Eqs. (B3) and (B4), which numerically are both
positive. As the spin polarization drops abruptly at low
densities forB ¼ 1017–1018 G [see Fig. 3(b)],ΠOPV

0 partially
loses the spin-up contribution at lower densities as compared
to higher values ofB. This explains the weaker growth at low
and medium densities observed in Fig. 5(b) for B < 5×
1018 G. This effect is accentuated as the density increases,
because ~μn shows a decreasing behavior (see Fig. 4). On the
other hand, the coefficient κnB in the second term of Eq. (B2)
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FIG. 5. The effective mass for (a) charged pions, and (b) the
neutral pion, as a function of the density for several magnetic
intensities in pure neutron matter.
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reduces drastically the contribution of Eq. (B4) when
B<5×1018G. From the numerical analysis, it is found that
Eq. (B4) increases with density, and for a given value of nB is
significantly greater than Eq. (B3). As a consequence, we
observe a high slope for B ¼ 1019 G, a moderate slope for
B ¼ 5 × 1018 G, and a tiny slope for the remaining cases.
It must be pointed out that the dependence on the

magnetic field shown in Fig. 5(b) is an exclusive conse-
quence of the neutron magnetic moment. If κn ¼ 0, all the
curves will coincide.
Symmetric nuclear matter is considered in Fig. 6; in such

conditions, the polarization is solely due to the OPV. In
particular, for the neutral pion [Fig. 6(c)], there is a sum of
independent proton and neutron terms. The neutron con-
tribution produces a smooth dependence, as discussed
above. In fact, the results for the neutral pion mass in

neutron or symmetric nuclear matter are qualitatively
similar. The rate of growth is slightly more pronounced
for the latter case, with the exception of B ¼ 1019 G.
For the charged pions, there is a mix of neutron and proton

terms in each diagram. In contrast to the previous case, there
are some pronounced irregularities, related to the occupation
of the discrete Landau levels, which are emphasized as the
magnetic field increases. The case of the negatively charged
pion is examined in Fig. 6(a). For the lowest magnetic
intensities, the proton levels are gradually and almost
smoothly occupied as the density increases, reaching n ¼
120 for B ¼ 1017 G and n ¼ 12 for B ¼ 1018 G. As a
consequence, the effective mass increases monotonously in
the first case, and a mild oscillatory behavior appears in the
second case. A drastic change is observed for B ¼ 5×
1018 G. There are abrupt modifications of the slope at the
densities nB=n0 ≃ 0.6, 1.4, 1.6, and 2.9. To be more precise,
the curve exhibits at these points local maxima followed by a
fast increase. At these densities precisely, the opening of the
Landau levels n ¼ 1, s ¼ 1 and n ¼ 2, s ¼ 1, the threshold
of the proton depolarization [see Fig. 3(a)], and the beginning
of the population of the n ¼ 2, s ¼ −1 level, respectively,
take place. In contrast to the previous cases, these changes take
place at relatively greater densities (with higher Fermi
momentum), hence the effect is amplified. For the most
intense field considered here, B ¼ 1019 G, a drop of roughly
4% occurs at nB=n0 ≃ 1.6, followed by a further increase. At
this point, the Landau level n ¼ 1 becomes available.
In fact, the same description, but at a considerably minor

scale, holds for B ¼ 5 × 1018 G, nB=n0 ≃ 0.6, where the
proton phase is completely polarized and the population of
the first excited Landau level is initiated. In regard to the
positively charged pion, it must be noted that some pairs of
terms in Eq. (B6) contribute with opposite signs, in contrast
to the result for Eq. (B8). As a consequence, the same
causes have qualitatively different manifestations for the
results shown in Fig. 6(b), and for those just discussed for
Fig. 6(a). For instance, when B ¼ 1019 G, a jump in the
effective mass is present at nB=n0 ≃ 1.6. For densities
above or below this point, the effective mass is increasing at
the beginning, then it stabilizes and eventually decreases.
This effect is due to the cancellation of pairs of terms
growing with density but with opposite signs. A similar
sketch is obtained for B ¼ 5 × 1018 G, but with signifi-
cative points at nB=n0 ≃ 0.6, 1.4, 1.6, 2.9.
For the two remaining values of B, a smooth behavior is

obtained, in agreement with the correspondent results
shown in Fig. 6(a).
To complete this discussion, the effective pion mass

obtained for symmetric nuclear matter in the lowest Landau
level approximation is shown in Fig. 7. In this approach, the
summation over Landau levels with n ≥ 1 is neglected.
From comparison with Fig. 6, we conclude that, with
exception of the very low density regime, this approxima-
tion is not acceptable for intensities B ≤ 1018 G. As B is
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FIG. 6. The effective mass of (a) the negatively charged pion,
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function of the density for several magnetic intensities and
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increased, the domain of the completely polarized proton
phase is extended, and the approximation results are more
adequate. For instance, qualitative agreement is obtained
until nB=n0 ∼ 1.5 for B ¼ 5 × 1018 and 1019 G.
To end this section, we consider the imaginary part of the

pion polarization, which is related to the in-medium
dynamical stability of the particle. We have checked that
the quantity τ ¼ jImΠðp0 ¼ m�Þj=m� increases with the
density and the magnetic intensity. For all the ranges of
densities and magnetic intensities considered in our cal-
culations, we have verified that τ < 0.12.

VI. CONCLUSIONS

In this work, a covariant calculation of the propagator of
Dirac and spin-zero Bose fields in the presence of a uniform

external magnetic field has been presented. The nonzero
magnetic moment of the fermion has been fully taken
into account. The expressions found are valid for finite
temperature and density. Furthermore, the gauge dependent
contribution is reduced to a phase term as in the proper
time evaluation of Ref. [17]. The propagators depend
only on the four-momentum, improving the results found
in Ref. [21].
The formalism has been applied to define an effective

mass of the pion field, propagating in a dense nuclear
medium at zero temperature. The approach proposed
neglects divergent contributions from the Dirac sea, as is
a common practice in QHD calculations. It must be taken
into account that QHD models exhibit vacuum instabilities
[29–31] which appear for transferred momentum above
2–3 GeV [29] when Dirac contributions to the diagram in
Fig. 1(c) are included. This result questions the original
interpretation of this kind of model as a realistic field theory
description. A procedure for eliminating such instabilities
was presented in Ref. [31]. The significant fact that the
model breaks down at length scales 0.2 fm, smaller than the
nucleon size, could indicate the emergence of substructure
effects. Thus, QHD can be regarded as phenomenological
descriptions which include interactions and solution pro-
cedures in its formulation. Therefore, it will be interesting
to complement the results shown with a correction which
takes account of the structure of hadrons.
The effective pion mass has been examined for two

conditions of interest in practical application: pure neutron
matter and isospin symmetric nuclear matter. Furthermore,
we have focused on the domain of very strong magnetic
fields, B ≥ 1017 G, and have covered particle densities
below 3 times the nuclear saturation density.
In most situations, the effective mass increases with the

density. As the magnetic intensity grows, the behavior is
marked by the thresholds of the proton Landau levels and
the change of the spin polarization of the nucleons.
Furthermore, by taking the imaginary part of the pion

polarization as a measure of its stability in the nuclear
medium, we have found that the neutral and positive pions
are stable, and the negative pion becomes slightly unstable
for high densities and magnetic intensities.
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APPENDIX A: FOUR-MOMENTUM
REPRESENTATION OF THE PROTON

PROPAGATOR

In order to derive Eqs. (20)–(22) from Eq. (17), we first
integrate py separately for the first and second terms
between curly brackets.
In the first case, the relation
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FIG. 7. The effective mass of the charged pions in the lowest
Landau level approximation for symmetric nuclear matter as a
function of the density. Results for (a) the negative pion and
(b) the positive pion are shown for several magnetic intensities.
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Z
dpy

2π
eipyðy0−yÞe−ðξ2þξ02Þ=2 ¼

ffiffiffiffiffiffi
qB
4π

r
eiΦe−qB½ðx−x0Þ2þðy−y0Þ2�=4

ðA1Þ

is used, which follows from Eq. 17.23 (13) of Ref. [27].
For the next step, the following relations will be useful:Z

π

−π
dθeiz cosðθ−φÞ ¼ 2πJ0ðzÞ; ðA2Þ

Z
π

−π
dθe�iθeiz cosðθ−φÞ ¼ 2πie�iφJ1ðzÞ; ðA3Þ

which can be deduced with the help of Eq. 8.511 (4)
of Ref. [27].
The last exponential on the right hand side of

Eq. (A1) can be expressed in terms of a bidimensional
integral on the momentum plane orthogonal to the exter-
nal field:

e−qB½ðx−x0Þ2þðy−y0Þ2�=4 ¼ 1

πqB

Z
∞

0

dp⊥p⊥e−p
2⊥=qB

Z
π

−π
dθeip⊥R cosðθ−φÞ;

where p⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ p2

y

q
, and R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − x0Þ2 þ ðy − y0Þ2

p
. Furthermore, θ, and φ are the angular coordinates on the

orthogonal planes of the vectors ðpx; pyÞ and ðx0 − x; y0 − yÞ, respectively. For this purpose, Eq. 6.631 (4) of Ref. [27] and
Eq. (A2) have been successively used. Thus, the relation

Z
dpy

2π
eipyðy0−yÞe−ðξ2þξ02Þ=2 ¼

ffiffiffiffiffiffi
4π

qB

s
eiΦ

Z
dpxdpy

ð2πÞ2 ei½pxðx0−xÞþpyðy0−yÞ�e−p2⊥=qB

is established.
On the other hand, by using Eq. 7.377 of Ref. [27], it can be shown that

Z
dpy

2π
eipyðy0−yÞe−ðξ2þξ02Þ=2Λns ¼

ffiffiffiffiffiffi
qB
4π

r
eiΦe−qBR

2=42nn!

�
ðu − κBþ sΔnÞ

�
ΠðþÞLn þ iγ1Πð−Þm − sΔn

2n
Re−iφL1

n−1

�

þ ðuþ κB − sΔnÞ
sΔn −m
sΔn þm

�
Πð−ÞLn−1 þ iγ1ΠðþÞmþ sΔn

2n
ReiφL1

n−1

��
; ðA4Þ

where the argument of all the Laguerre polynomials on the right-hand side is qBR2=2, and by definition R cosφ ¼ x0 − x,
R sinφ ¼ y0 − y. Use has been made of the fact that Laguerre polynomials have definite parity.
Furthermore, the relations

e−qBR
2=4LnðqBR2=2Þ ¼ ð−1Þn

πqB

Z
∞

0

dp⊥p⊥e−p
2⊥=qBLnð2p2⊥=qBÞ

Z
π

−π
dθeip⊥R cosðθ−φÞ; ðA5Þ

Re�iφe−qBR
2=4L1

nðqBR2=2Þ ¼ ð−1Þn
2πi

�
2

qB

�
2
Z

∞

0

dp⊥p2⊥e−p
2⊥=qBL1

nð2p2⊥=qBÞ
Z

π

−π
dθe�iθeip⊥R cosðθ−φÞ ðA6Þ

are obtained from Eq. 7.421 (4) of Ref. [27] and Eqs. (A2)–(A3).
When the last two equations are inserted into Eq. (A4), the result

Z
dpy

2π
eipyðy0−yÞe−ðξ2þξ02Þ=2Λns ¼

ffiffiffiffiffiffi
4π

qB

s
eiΦ2nn!ð−1Þn

Z
dpxdpy

ð2πÞ2 ei½pxðx0−xÞþpyðy0−yÞ�e−p2⊥=qB

×

�
ðu − κBþ sΔnÞΠðþÞLn − ðuþ κB − sΔnÞΠð−Þ sΔn −m

sΔn þm
Ln−1

þ sΔn −m
nqB

p⊥½ðu − κBþ sΔnÞγ1Πð−Þe−iθ − ðuþ κB − sΔnÞγ1ΠðþÞeiθ�L1
n−1

�
ðA7Þ

is obtained.
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After some algebra on the last term between curly brackets and the use of Eq. 8.971 (4) of Ref. [27] to put Lð1Þ
k in terms of

Lk − Lk−1, we obtain the final expression:

Z
dpy

2π
eipyðy0−yÞe−ðξ2þξ02Þ=2Λns ¼

ffiffiffiffiffiffi
4π

qB

s
eiΦ2nn!ð−1Þn

Z
dpxdpy

ð2πÞ2 ei½pxðx0−xÞþpyðy0−yÞ�e−p2⊥=qB

×

�
ðu − κBþ sΔnÞΠðþÞLn − ðuþ κB − sΔnÞΠð−Þ sΔn −m

sΔn þm
Ln−1

þ sΔn −m
2p2⊥

½uþ ðsΔn − κBÞiγ1γ2�iγ1γ2vðLn − Ln−1Þ
�
: ðA8Þ

APPENDIX B: PION POLARIZATION FUNCTION FOR TIME-LIKE MOMENTUM

Here we give explicit formulas for the one-pion exchange contribution to the pion polarization at p ¼ 0.
Since

Π0 ¼ ΠðnÞ
0 þ ΠðpÞ

0

we have

ReΠðnÞ
0 ðp0Þ ¼

�
gA

4πfπ

�
2
Z

∞

0

dt
Δ2

X
s;s0

½2m2 þ ðss0 − 1ÞΔ2�Θð~μn − jMsjÞðMs þMs0 Þ

×

�
ðMs0 −MsÞ log

�
~μn þ pFs

~μn − pFs

�
þ ηðMs þMs0 Þ

p2
0 − ðMs −Ms0 Þ2

Λ

×

�
2Θð4p2

0M
2
s − ðp2

0 þM2
s −M2

s0 Þ2Þ arctan
�
p2
0 þM2

s −M2
s0

ηΛ ~μn
pFs

�

− Θððp2
0 þM2

s −M2
s0 Þ2 − 4p2

0M
2
sÞ log

�
Λ ~μn þ ηðp2

0 þM2
s −M2

s0 ÞpFsÞ
Λ ~μn − ηðp2

0 þM2
s −M2

s0 ÞpFsÞ
���

; ðB1Þ

where Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ t

p
, Ms ¼ sΔ − κnB, pFs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2n −M2

s

p
, η ¼ sgnðp0Þ, and Λ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4p2

0M
2
s − ðp2

0 þM2
s −M2

s0 Þ2j
q

.
Although the domain of integration is not bounded, the relation

Θð ~μn − jMsjÞ≡ Θðð ~μn þ sκnBÞ2 −m2 − tÞΘð~μn þ sκnB −mÞ;

which is valid for the conditions under consideration, establishes an upper limit of integration. By performing the sum over
s0, it can be rewritten as

ReΠðnÞ
0 ðp0Þ ¼

�
gA
πfπ

�
2
Z

∞

0

dt
2Δ2

X
s

Θð ~μn − jMsjÞðA1s − κnBtA2sÞ; ðB2Þ

A1s ¼ p0m2
M2

s

λ

�
2Θð4M2

s − p2
0Þ arctan

�
p0pFs

~μnλ

�
þ Θðp2

0 − 4M2
sÞ log

�
~μnλ − p0pFs

~μnλþ p0pFs

��
; ðB3Þ

A2s ¼ sΔ log

�
~μn þ pFs

~μn − pFs

�
þ ηκnB

p2
0 − 4Δ
λ0

�
2Θð4p2

0M
2
s − ðp2

0 − 4sκnBΔÞ2Þ arctan
�
ηpFs

p2
0 − sκnBΔ

~μnλ
0

�

þ Θððp2
0 − 4sκnBΔÞ2 − 4p2

0M
2
sÞ log

�
~μnλ

0 − ηðp2
0 − 4sκnBΔ2ÞpFs

~μnλ
0 þ ηðp2

0 − 4sκnBΔ2ÞpFs

��
; ðB4Þ

where λ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2

0 − 4M2
s j

p
, and λ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4p2

0M
2
s − ðp2

0 þ 4sκnBΔ2Þ2j
p

.
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ImΠðnÞ
0 ðp0Þ ¼

�
gA
4fπ

�
2
Z

∞

0

dt
π

X
s;s0

ss0

Δ2
½2m2 þ ðss0 − 1ÞΔ2� ðMs þMs0 Þ2

Λ2

½p2
0 − ðMs −Ms0 Þ2�

×

�
Θ
�
~μn −

M2
s −M2

s0 þ p2
0

2p0

�
Θ
�ðp0 − jMsjÞ2 −M2

s0

2p0

��
2Θ

�
~μn −

M2
s −M2

s0 − p2
0

2p0

�
− 1

�

þ Θ
�
~μn −

M2
s −M2

s0 − p2
0

2p0

�
Θ
�
M2

s − ðp2
0 þ jMs0 jÞ2
2p0

��
;

ReΠðpÞ
0 ðp0Þ ¼

�
gA
πfπ

�
2

qB

�
Θð ~μp − jM0jÞA0 þ

1

16

X
n;s;s0

Θð ~μp − jMnsjÞAnss0

�
;

A0 ¼ p0

M2
0

λ0

�
2Θð4M2

0 − p2
0Þ arctan

�
p0pF0

~μpλ0

�
þ Θðp2

0 − 4M2
0Þ log

�
~μpλ0 − p0pF0

~μpλ0 þ p0pF0

��
;

Anss0 ¼
Δn þ sm

Δn

Δn þ s0m
Δn

�
1 − 2

m − s0Δn

mþ sΔn
þ m − sΔn

mþ sΔn

m − s0Δn

mþ s0Δn

�

×

�
ðM2

ns0 −M2
ns0 Þ log

�
~μp þ pFns

~μp − pFns

�
þ η

Λ1

ðMns þMns0 Þ2½p2
0 − ðMns −Mns0 Þ2�

×
�
2Θð4p2

0M
2
ns − ðp2

0 þM2
ns −M2

ns0 Þ2Þ arctan
�
ηpFns

p2
0 þM2

ns −M2
ns0

~μpΛ1

�

þ Θððp2
0 þM2

ns −M2
ns0 Þ2 − 4p2

0M
2
nsÞ log

�
~μpΛ1 − ηðp2

0 þM2
ns −M2

ns0 ÞpFns

~μpΛ1 þ ηðp2
0 þM2

ns −M2
ns0 ÞpFns

�
;

��
ðB5Þ

with M0 ¼ m − κpB, Mns ¼ sΔn − κpB, pF0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2p −M2

0

q
, pFns ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~μ2p −M2

ns

q
, λ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jp2

0 − 4M2
0j

p
, and

Λ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j4p2

0M
2
ns − ðp2

0 þM2
ns −M2

ns0 Þ2j
q

.

ImΠðpÞ
0 ðp0Þ ¼

�
gA
fπ

�
2 qB
2π

�
C0 þ

1

8

X
nss0

Cnss0

�
;

C0 ¼ 2ηp0

M2
0

λ0
fΘð−p0 − 2M0ÞΘð~μp þ p0=2Þ þ Θðp0 − 2M0ÞΘð ~μp − p0=2Þ½1 − 2Θð~μp þ p0=2Þ�g;

Cnss0 ¼ ðΔn þ smÞðΔn þ s0mÞ
�
Mns −Mns0

Δn

�
2 p2

0 − ðMns −Mns0 Þ2
Λ1

�
1 − 2

m − s0Δn

mþ sΔn
þ m − sΔn

mþ sΔn

m − s0Δn

mþ s0Δn

�

×

�
Θ
�ðp0 −MnsÞ2 −M2

ns0

2p0

�
Θ
�
~μp −

p2
0 þM2

ns −M2
ns0

2p0

��
1 − 2Θ

�
~μp þ

p2
0 þM2

ns0 −M2
ns

2p0

��

þ Θ
�
M2

ns − ðp0 þMns0 Þ2
2p0

�
Θ
�
~μp þ

p2
0 þM2

ns0 −M2
ns

2p0

��
;

ReΠþðp0Þ ¼
�

gA
4πfπ

�
2
Z

∞

0

dt
Δ
e−t=qB

X
s0

�
ðΔþ s0mÞ½Θð ~μp − jM0jÞFpðpF0;M0; λ0Þ þ Θð ~μn − jMs0 jÞFnðpF0;M0; λ0Þ�

þ
X
ns

ð−1Þn Δn þ sm
2Δn

�
ðΔþ s0mÞLn − ðΔ − s0mÞ sΔn −m

sΔn þm
Ln−1 − s0ðsΔn −mÞðLn − Ln−1Þ

�

× ½Θð ~μp − jMnsjÞFpðpFns;Mns;Λ1Þ þ Θð ~μn − jMs0 jÞFnðpFs0 ;Mns;Λ1Þ�
�
; ðB6Þ
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Faðx;M;UÞ ¼ −Ia
�
4p0xþ ðM2 −M2

s0 Þ log
�
~μa þ x
~μa − x

��
þ η

U
ðMs0 þMÞ2½p2

0 − ðMs0 −MÞ2�

×

�
2Θð4p2

0M
2 − ðp2

0 þM2 −M2
s0 Þ2Þ

�
arctan

�
ηx

p2
0 þ IaðM2 −M2

s0 Þ
~μaU

�
þ Ia arctan

�
2ηp0

x
U

��

þΘððp2
0 þM2 −M2

s0 Þ2 − 4p2
0M

2ÞIa
�
log

�
~μaU − ηðp2

0Ia þM2 −M2
s0 Þx

~μaUþ ηðp2
0Ia þM2 −M2

s0 Þx
�
þ log

�
U − 2ηp0x
Uþ 2ηp0x

���
; ðB7Þ

where we have introduced the isospin projection number Ip ¼ 1, In ¼ −1, and all Laguerre functions have the same
argument Lkð2t=qBÞ.

ImΠþðp0Þ ¼
�
gA
4fπ

�
2
Z

∞

0

dt
π

e−t=qB

Δ

X
s0

�
2ðΔþ s0mÞGðM0; λ0Þ þ

X
ns

ð−1ÞnΔn þ sm
Δn

×

�
ðΔþ s0mÞLn − ðΔ − s0mÞ sΔn −m

sΔn þm
Ln−1 − s0ðsΔn −mÞðLn − Ln−1Þ

�
GðMns;Λ1Þ

�
;

GðM;UÞ ¼ ðMs0 þMÞ2 p
2
0 − ðMs0 −MÞ2

U

�
Θ
�
M2 − ðp0 þ jMs0 jÞ2

2p0

�
Θ
�
~μn −

M2 −M2
s0 − p2

0

2p0

�

þ Θ
�ðp0 − jMjÞ2 −M2

s0

2p0

�
Θ
�
~μp −

M2 −M2
s0 þ p2

0

2p0

��
1 − 2Θ

�
~μn −

M2 −M2
s0 − p2

0

2p0

���
;

ReΠ−ðp0Þ ¼
�

gA
4πfπ

�
2
Z

∞

0

dt
Δ
e−t=qB

X
s0

�
ðΔþ s0mÞ½Θð~μp − jM0jÞGpðpF0;M0; λ0Þ

þ Θð ~μn − jMs0 jÞGnðpF0;M0; λ0Þ� þ
X
ns

ð−1ÞnΔn þ sm
2Δn

×

�
ðΔþ s0mÞLn − ðΔ − s0mÞ sΔn −m

sΔn þm
Ln−1 − s0ðsΔn −mÞðLn − Ln−1Þ

�

× ½Θð ~μp − jMnsjÞGpðpFns;Mns;Λ1Þ þ Θð ~μn − jMs0 jÞGnðpFs0 ;Mns;Λ1Þ�
�
;

Gaðx;M;UÞ ¼ Ia

�
4p0xþ ðM2

s0 −M2Þ log
�
~μa þ x
~μa − x

��
þ η

U
ðMs0 þMÞ2½p2

0 − ðMs0 −MÞ2
�

×

�
2Θð4p2

0M
2 − ðp2

0 þM2 −M2
s0 Þ2Þ

�
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�
ηx

p2
0 þ IaðM2 −M2

s0 Þ
~μaU

�

− Ia arctan

�
2ηp0
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U

��
þ Θððp2

0 þM2 −M2
s0 Þ2 − 4p2

0M
2ÞIa

×

�
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�
~μaU − ηðp2

0Ia þM2 −M2
s0 Þx

~μaU þ ηðp2
0Ia þM2 −M2

s0 Þx
�
þ log

�
U þ 2ηp0x
U − 2ηp0x

���
;

ImΠ−ðp0Þ ¼
�
gA
4fπ

�
2
Z

∞

0

dt
π

e−t=qB

Δ

X
s0

�
2ðΔþ s0mÞHðM0; λ0Þ þ

X
ns

ð−1Þn Δn þ sm
Δn

×

�
ðΔþ s0mÞLn − ðΔ − s0mÞ sΔn −m

sΔn þm
Ln−1 − s0ðsΔn −mÞðLn − Ln−1Þ�HðMns;Λ1Þ

��
;

HðM;UÞ ¼ ðMs0 þMÞ2 p
2
0 − ðMs0 −MÞ2

U

�
Θ
�
M2

s0 − ðp0 þ jMjÞ2
2p0

�
Θ
�
~μp −

M2
s0 −M2 − p2

0

2p0

�

þ Θ
�ðp0 − jMs0 jÞ2 −M2

2p0

�
Θ
�
~μn −

M2
s0 −M2 þ p2

0

2p0

��
1 − 2Θ

�
~μp −

M2
s0 −M2 − p2

0

2p0

���
: ðB8Þ

The expressions for the pion polarizations ΠOPV
− and ΠOPVþ are formally related by the simple transformation p0 → −p0.
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