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Applicability of the Richardson method in a complex-energy basis: Fermionic case
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We are testing the applicability of the algebraic procedure developed by Richardson for bound states to solve
the pairing-force problem in presence of states with complex energies. This scenario, in which nucleons occupy
single-particle states with complex energies and interact via the pairing force, is closely related to the microscopic
description of nuclei with a large neutron (or proton) excess in basis which includes single-particle resonances.
It is shown that the method gives results which are in good agreement with exact solutions. This finding is in
coincidence with previously published works, by other authors, based on different methods to describe resonances.
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I. INTRODUCTION

The experimental search of neutron- or proton-rich nu-
clei [1] and the subsequent theoretical interpretation of their
properties has been in focus over the last decades. From
the theoretical side, the need to include the continuum in
the single-particle spectrum has become evident, particularly
after the pioneering work of Bergreen [2] and Liotta et al. at
Stockholm [3,4]. These notions have been extended later on
by other authors [5–8], and they are by now well-established
concepts. The microscopic description of mean-field and
pairing effects in the presence of single-particle resonances
is a rather difficult task due to the appearance of convergence
problems and to the introduction of energy truncations [9].
The treatment of pairing in the presence of single-particle
states with complex energies was analyzed by using extensions
of the Green’s function formalism in Ref. [10] and by using
extensions of the BCS approach [11]. In view of these pieces
of information, we aim at testing another approach, which
has been known for decades, to find solutions to the pairing
force problem. This method, formulated by Richardson [12],
has recently been applied, rather successfully, to a variety of
many-body systems by Dukelski et al. [13–15]. It proved to be
particularly useful for the calculation of pairing parameters in
a large basis. In this work we adopt the description of resonant
states of Ref. [16] and apply Richardson’s method to find
solutions to the pairing-force problem for fermions moving
in a basis which includes such states. Previous attempts in
the same direction are documented in papers by Hasegawa
and Kaneko [17], where the effects of resonant single-particle
states on the pairing correlations are investigated by an
exact treatment of the pairing Hamiltonian on the Gamow
shell-model basis [3,4]. The authors of Ref. [17] have shown
that many-body correlations between bound and resonant
particle pairs are indeed important, and they particularly
stressed the point that their approach using the Richardson
equations is not adequate to this problem. In another work, Id-
Betan [18] addressed the question of whether one can use the
Hamiltonian with constant pairing strength for correlations in
the continuum, and generalized the Richardson exact solution
for the pairing Hamiltonian including these correlations. In
Ref. [18] the continuum is accounted for by introducing

a continuation on the real axis and performing a Cauchy
integration. There it is concluded that energy levels can be
calculated with constant pairing in the continuum [18].

In this paper, and to determine the validity of Richardson’s
approach under more general conditions, we compare the
results obtained with that approach with exact solutions in
model spaces which include bound and resonant states. The
procedure to obtain exact solutions is based on the extension
of the formalism of Ref. [19] to a complex single-particle
basis. We explicitly compare real and imaginary parts of
the eigenvalues and explore the validity of the approach in
presence of bifurcation points. The systematic exploration
of the applicability of Richardson’s method, which we are
presenting here, complements the information provided by
the investigations of Refs. [17,18] and, in our opinion, gives
ground to the use of the method in an extended complex basis.

In Sec. II we are briefly presenting the essentials of
Richardson’s method [12] and define the basis in which we are
solving the pairing force problem. The results are presented
and discussed in Sec. III and our conclusions are presented in
Sec. IV.

II. FORMALISM

The separable monopole pairing Hamiltonian is written

H =
X

k

²kc
†
kck + g

X

ij

p
Äi

p
ÄjA

†
i Aj , (1)

where c
†
k (ck) are single-particle creation (annihilation) oper-

ators and A
†
k (Ak) are pair-creation (annihilation) operators

which create (annihilate) pairs of particles coupled to zero
total angular momentum. The index k represents the set of
quantum numbers needed to specify the single-particle orbit,
and g is the strength of the pairing interaction. Each of the
single-particle orbits has a half-degeneracy Äk = jk + 1

2 , with
jk being the corresponding angular momentum of the orbit of
energy ²k . Since we are working with fermions, the operators
c
†
k, ck obey anticommutation rules.

It was shown [19] that exact solutions of Eq. (1) in a basis of
two single-particle levels can be obtained by diagonalization
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in the space of coupled pairs,

|n1, . . . ,nk, . . . ,nli = 5i

A
†ni

i√
[ni]!

|0i, (2)

where np = P
i ni is the total number of pairs in the system.

The expression of the matrix elements of Eq. (1) in the basis (2) is the following:

hn0
1 . . . ,n0

k, . . . ,n
0
l|H |n1 . . . ,nk, . . . ,nli

= ¡
5hδn0

hnh

¢ X

k

2²knk + g
X

ij

p
Äj [nj − δij + 1]Äi[ni]

¡
5h 6=i,j δn0

hnh

¢
δn0

j nj +1−δij
δn0

ini−1+δij

= ¡
5hδn0

hnh

¢ X

k

2²knk + g
X

ij

p
(nj − δij + 1)(Äj − nj + δij )ni(Äi − ni + 1)

¡
5h 6=i,j δn0

hnh

¢
δn0

j nj +1−δij
δn0

i ni−1+δij
.

The Richardson equations have the form [12]

1

2g
=

NlX

k=1

dk

2²k − xα

+
X

β 6=α

1

xα − xβ

, (3)

where Nl is the number of single-particle levels, xα with α =
1,2, . . . ,np, np being the number of pairs, are the complex-
value parameters associated with each Richardson pair, and
dk = νk − Äk/2 is the effective degeneracy of orbit k with
seniority νk .

In the Richardson method, the eigenvalues of the Hamilto-
nian are given by the sum of the xα parameters associated with
each state and, for seniority-zero states, they are expressed by
the sum

E({x}) =
X

α

xα (4)

for each state, and they are purely real values; that is, the sum
of the imaginary part of the set of parameters xα vanishes. The
determination of the parameters xα was a matter of algebraic
manipulations until Dukelski et al. [13–15] developed a less
ambiguous way of finding them. In the present case we
solve a system of np coupled equations in the variables xα .
Each equation of the system has the form [12]. As said
before, the correspondence between the eigenvalues of the
Hamiltonian (1) and the set of parameters xα is unique, but
in some situations, which we illustrate in the next section, it
may not be so clearly established because of the appearance of
bifurcations and level crossings. This effect may be even more
manifest if the single-particle basis has states with complex
energies, and this is the point we want to investigate since it
may be crucial for the stability of the solutions of Richardson’s
method.

III. RESULTS AND DISCUSSIONS

We present, first, the results obtained by an exact diag-
onalization of the Hamiltonian, in a two-level basis, where
the energy level of the upper shell will be taken as real, and
afterwards taken as complex, in order to grasp the main features
of the solutions. Figures 1 and 2 show the exact solutions
and those obtained with Richardson’s method, respectively,
for a system of three pairs interacting via the pairing force
and moving in a space of two shells with degeneracy Ä. The

energies and Richardson’s parameters are given as functions
of the variable gÄ/2², which is the ratio between the pair
interaction energy and the energy spacing of the two levels. For
this case, we have taken all energies as real. The configuration
space is spanned by four states, corresponding to the four
configurations of three pairs moving in two levels.

The exact solutions are well separated and the lowest one
shows the typical behavior due to the pairing interaction in the
space of pairs, which is the building up of coherent correlations
which push down the energy of one of the states [19]. Since
all configurations have real energies, all of the eigenvalues are
real.

The results of Fig. 2 are consistent with the exact solution.
Since we have three pairs the method yields three parameters:
x1, x2, x3. Two of them are complex-conjugate quantities and
the remaining one is real. The sum of the real part of these
parameters, for each of the four states, yields the value of the
exact solutions. To help with the comparison we have listed
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FIG. 1. Exact eigenvalues for a two-level system with Ä1 = Ä2 =
Ä = 10, and energies ²1 = ²

2 and ²2 = − ²
2 and number of fermion

pairs, np = 3. Both levels have real energy. The energies are given in
arbitrary units.
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FIG. 2. Richardson pair energies (xα) for the system of Fig. 1. In
the insets of the figure, from bottom to top, we show the real (left
panel) and imaginary (right panel) components of the solutions for the
ground state, and first-, second-, and third-excited states, respectively.
The energies are given in arbitrary units.

in Table I the exact solutions and the values of the associated
Richardson parameters for a given value of the ratio gÄ/2².

After showing that the determination of Richardson’s
parameters for three pairs of fermions, interacting in a basis
consisting of two levels with real energy and the same
degeneracy, is indeed feasible and that it yields the same values
as the exact diagonalization of the Hamiltonian in the space of

TABLE I. Numerical values of the exact solutions and Richard-
son’s parameters for the system of three pairs in a two-level system.
The parameters of the system are given in the caption to Fig. 1 and
the table shows the results obtained with gÄ/2² = 0.4. The column
denoted by λi indicates the eigenvalue index, the real and imaginary
part of the exact eigenvalues are given in the second and third columns,
respectively. The Richardson’s parameters xα for each eigenstate are
given in the fifth (real part) and sixth (imaginary part) columns. All
values are given in arbitrary units of energy.

Eigenvalue Pair energy

λi Real Imaginary xi Real Imaginary

4 1.69568 0.00000 x1 0.5796 0.2551
4 1.69568 0.00000 x2 0.5796 −0.2551
4 1.69568 0.00000 x3 0.5366 0.0000
3 −0.92850 0.00000 x1 0.5019 0.1567
3 −0.92850 0.00000 x2 0.5019 −0.1567
3 −0.92850 0.00000 x3 −1.9323 0.0000
2 −3.38744 0.00000 x1 0.4376 0.0000
2 −3.38744 0.00000 x2 −1.9125 0.2923
2 −3.38744 0.00000 x3 −1.9125 −0.2923
1 −5.69974 0.00000 x1 −1.8699 0.5190
1 −5.69974 0.00000 x2 −1.8699 −0.5190
1 −5.69974 0.00000 x3 −1.9599 0.0000
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FIG. 3. Exact eigenvalues, for three fermion pairs moving in two
levels of degeneracy Ä. The lower level has a real energy ²1 = −²

and the upper one has complex energy with real part ²2 = ² and
imaginary part 0 = −0.05. All values are given in arbitrary units of
energy.

pairs, we repeat the calculation, this time allowing the upper
level of the two-level system to have a complex energy. The
results of the diagonalization are shown in Fig. 3, both for the
real and imaginary part of the eigenvalues. The results which
we have obtained by applying Richardson’ s method to this
case are shown in Fig. 4. As indicated in the captions, 0 is the
imaginary part of the energy of the upper level of the basis,
and for this case the absolute value of the ratio between the
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FIG. 4. Richardson pair energies (xα) for the system of Fig. 3.
From bottom to top the insets show the results for the real (left panel)
and imaginary (right panel) part of the solutions for the ground state
and for the excited states, respectively.
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TABLE II. Exact solutions and values of the Richardson param-
eters for the pairing eigenvalue problem of three pairs of fermions
moving in a two-level basis with the upper level with complex energy,
the same of Figs. 3 and 4, and for gÄ/2² = 0.4. All values are given
in arbitrary units of energy.

Eigenvalue Pair energy

λi Real Imaginary xi Real Imaginary

4 1.69484 −0.27678 x1 0.5848 0.1625
4 1.69484 −0.27678 x2 0.5738 −0.3480
4 1.69484 −0.27678 x3 0.5362 −0.0912
3 −0.92905 −0.18569 x1 0.5052 0.0663
3 −0.92905 −0.18569 x2 0.4978 −0.2474
3 −0.92905 −0.18569 x3 −1.9321 −0.0046
2 −3.38733 −0.10348 x1 0.4371 −0.0883
2 −3.38733 −0.10348 x2 −1.9106 −0.2999
2 −3.38733 −0.10348 x3 −1.9138 0.2847
1 −5.69846 −0.03405 x1 −1.8657 −0.5303
1 −5.69846 −0.03405 x2 −1.8733 0.5075
1 −5.69846 −0.03405 x3 −1.9595 −0.0112

real and imaginary parts of the energy of the upper level is of
the order of 2.5 × 10−2.

The results shown in Table II are very illustrative of the
changes in the structure of the parameters xα for the case of
a basis with a complex energy state. The complex-conjugate
pairs found for the basis with real energies of Table I are
broken and all the eigenvalues now have a complex energy.
The values corresponding to the sum of the parameters xα for
each configuration agree with the exact eigenvalues obtained
from the diagonalization, both in the real and imaginary part of
them. The numbers indeed agree quite well, as can be verified
by adding, for each eigenvalue λi of Table II, the corresponding
Richardson entries xi , both for the real and imaginary parts of

gΩ/2ε

FIG. 5. Exact solutions for the two-level system with 0 = −2.59,
and for the same other parameters given in the caption to Fig. 1.

-2

-1

0

1

Pair Energy (Real)

x1

x3

x2

-5

-3

-1

1 x1

x2

x3

-6

-4

-2

0
x1

x2
x3

-7

-5

-3

-1

0 0.5 1 1.5 2

gΩ/2ε

x1
x3

x2

-6

-5

-4

Pair Energy (Imaginary)

x1

x2

x3

-6

-4

-2

0
x3

x2

x1

-6
-4
-2
0
2 x3

x2

x1

-6

-4

-2

0

0 0.5 1 1.5 2

gΩ/2ε

x3

x2

x1

FIG. 6. Real and imaginary parts of the solutions xi , for each
configuration, for the same case as that of Fig. 5.

them. This is true both for the eigenvalue of lowest energy
(λi = 1 of Table II) which has the smaller imaginary part, the
ratio between the imaginary and the real part of the solution
is of the order of 6 × 10−3, and for the eigenvalue with the
largest energy (λi = 4 of Table II) where the absolute value of
the same ratio is of the order of 0.16.

The inclusion of complex-energy states in a basis, and
the consequences of its use in nuclear structure calculations,
as described in Refs. [11] often deals with the question
about the presence of broad resonances which may overlap.
To investigate the effects of these states on the stability of
the solutions, and to complete the numerical analysis of
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FIG. 7. Results of the calculations, applying Richardson’s
method, after adding up the values of xi , both real and imaginary, for
each eigenvalue. The results shown in this figure are to be compared
with the results shown in Fig. 5.
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TABLE III. Numerical values, for the solutions shown in
Figs. 5–7, for gÄ/2² = 0.4.

Eigenvalue Pair energy

λi Real Imaginary xi Real Imaginary

4 1.17145 −17.47342 x1 0.4647 −5.4505
4 1.17145 −17.47342 x2 0.3672 −6.2057
4 1.17145 −17.47342 x3 0.3396 −5.8172
3 −1.22062 −11.70880 x1 0.3278 −5.5941
3 −1.22062 −11.70880 x2 0.2776 −6.0615
3 −1.22062 −11.70880 x3 −1.8261 −0.0532
2 −3.27979 −5.97455 x1 0.2133 −5.8365
2 −3.27979 −5.97455 x2 −1.7246 −0.3192
2 −3.27979 −5.97455 x3 −1.7685 0.1811
1 −4.99104 −0.24324 x1 −1.6842 0.3339
1 −4.99104 −0.24324 x2 −1.5874 −0.4903
1 −4.99104 −0.24324 x3 −1.7194 −0.0869

the applicability of the method, we now discuss the results
obtained for the case of a basis where the imaginary part of
the upper level is fixed at quite a large value, that is by given
to 0 a value of the same order of magnitude of the real part,
making the absolute value of the ratio between them of the
order of unity.

Figure 5 shows the results of the exact diagonalization for
the case with 0 = −2.95, while Fig. 6 shows the solutions,
real and imaginary part of xi for each configuration. To make
the comparison between the exact results and the Richardson’s
results more explicit, in Fig. 7 we show the results obtained
by adding the values of xi for each eigenvalue, both real and
imaginary parts. This last figure shows the appearance of a
bifurcation point, and the resulting degeneracy of the some of
the solutions after reaching it. The pattern of the bifurcations
is quite interesting because it shows a correlation between
the real and imaginary part of the eigenvalues, which show a
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FIG. 8. Richardson method for a two-level system with Äi = 10,
np = 10. Parameters for the ground state, for the case with 0 = 0.0.
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FIG. 9. Richardson method for a two-level system with Äi = 10
and np = 10. Parameters xα for the first-excited state, for the case
with 0 = 0.0.

pair-like bifurcation; that is, two nearly degenerate real values
separate after the bifurcation point and their imaginary parts
do the contrary and from well-separated values they converge
to a nearly degenerate pair. The bifurcation point for this
case is reached at the value gÄ/2² = 1.409. This is indeed
a characteristic feature of Richardson’s solutions, when the
imaginary part of the energy of a level (in this case is the upper
one of the two-level model space) is comparable to the real part
of the energy. In realistic situations this case will correspond to
very broad resonances. At this point we should be particularly
careful since to a broad single-particle resonance, e.g., a state
with a large imaginary part of the energy resulting from the
diagonalization in a central potential; for instance, of the type
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FIG. 10. Richardson method for a two-level system with Äi =
10, and np = 10. Parameters for the ground state, for the case with
0 = −0.1.
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FIG. 11. Richardson method for a two-level system with Äi =
10, and np = 10. The curves show the value of the parameters xα of
the first-excited state for the case 0 = −0.1.

used in nuclear structure calculations [4,11], is associated a
very spread out radial wave function, and we are using here
a separable, radial independent pairing force which does not
account for the radial overlaps between states. In spite of this,
we remark that the purpose of this part of the calculations
is to show the appearance of bifurcations resulting from the
presence of a state with a large imaginary part of the energy. An
additional limitation for the use of states with a large widths, in
the context of Richardson’s method, is discussed in Ref. [16],
when talking about the occupancies of the single-particle
states, whose real parts becomes negative if the width of the
state is large.

The numerical solutions corresponding to the curves shown
in Figs. 5–7 are given in Table III.

We turn now our attention to cases where the degeneracy of
the shells and the number of pairs which can be accommodated
becomes larger than in the previous examples, to grasp the
dependence of the results upon these variables.

Figure 8 shows the Richardson parameters for the ground
state of a system of 10 pairs and Ä = 10. Figure 9 shows
the results, for the first-excited state for the same system. In
both figures the energy of each of the states of the basis is
real. In Figs. 10 and 11 we show the results for the same
configuration; this time for an upper level with complex energy,
with imaginary part 0 = −0.1. Again in this case, with a large
number of pairs and with larger degeneracy, it was possible to
find the parameters xα without difficulties.
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FIG. 12. Real part of the energy difference between the first-
excited state and the ground state, W = E1st exc. − Eg.s., obtained by
the exact diagonalization and by applying Richardson method, for a
two-level system with Äi = 10 and np = 10. The results correspond
to 0 = 0.0 (continuous line) and 0 = −0.1 (dashed line).

Finally, let us turn our attention to the behavior of the first-
excited state, this time by drawing the real part of the energy
difference between the first-excited state and the ground state.
The results, for Ä = 10, np = 10, and 0 = 0,−0.1, are shown
in Fig. 12. From the curves displayed in this figure, one can
see that the appearance of a gap in the spectrum is preserved.
Notice that, since the exact results and the results obtained
with Richardson method are in fact the same, they cannot be
distinguished numerically, therefore the curves show the small
difference between the calculations for these values of 0.

IV. CONCLUSIONS

In this work we have presented the results of exact
diagonalizations and those obtained by applying Richardson’s
method to systems of fermions interacting via the pairing
force and moving in basis with complex-energy states. The
calculations, although restricted to a two-level model space,
are demonstrative of the fact that the method due to Richardson
can also be applied to a complex energy basis. Since the
applicability of Richardson’s method to a basis with a large
number of states is already known from the work of Dukelski
et al. [13–15], its extension to a complex energy basis is
indeed legitimate. In this respect the results we have presented
complement the findings of Refs. [17,18] where the method
was applied without further discussions about its validity and
with apparently opposite conclusions.
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