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We study some simple one dimensional quantum mechanical systems characterized by a position dependent etfective mass. We consider two

systems with piecewise flat potential and mass. as well as a case with a smooth position dependence on these two quantities. These examples
illustrate the influence that a non-constant cffective mass has on the density of the (bound state) energy levels.
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En este trabajo se estudian algunos sistemas mecdnico-cudnticos unidimensionales sencillos caracterizados por una masa efectiva dependiente
de la posicion. Se consideran dos sistemas donde el potencial y la masa efectiva se definen a intervalos tomando valores constantes diferentes.
ast como un caso en que estas dos magnitudes dependen suavemente de la posicién. Los ejemplos analizados ilustran la influencia que una
masa electiva vanable ejerce sobre la densidad de niveles de energia (de los estados ligados).

Descriprores: Masa efectiva: sistemas cudnticos

PACS: 03.65.-w; 03.65.Ca: 03.65.Ge

1. Introduction

A quantum mechanical particle endowed with a position-
dependenteffective mass constitutes an interesting and useful
model for the study of many physical problems. The effec-
live mass approximation provides an important and widely
used theory tor the determination of the electronic proper-
lies of semiconductors [1] and quantum dots [2] (however, as
is shown in Ref. 3, this approximation is valid only for sys-
tems with large coherence lengths, which is not the case of
high Tc superconductors). Interest in this kind of approach is
crowing nowadays, stimulated by recent progress in crystal-
crowth techniques for the production of nonuniform semi-
conductor specimens. Much work has been done over the last
years on the study of the solutions of the Schridinger equa-
tion describing systems with non-constant mass. Some ex-
actly soluble models with smooth potential and mass steps
have been discovered [4. 5].

The concept of effective mass also plays an important
role within the strictures of the energy density functional
(EDF) approach to the quantum many body problem. The
EDF formalism has yielded reasonable theoretical predic-
tions ol many experimental properties for several quantum
many body systems. Within the EDF approach, the non-local
terms of the associated potential can be often expressed as a
position dependence on an appropriate effective mass m™*(r).
This formalism has been extensively used in nuclei [6], quan-
tum liquids [7]. *He clusters [8], and metal clusters [9]. The
concomitant single particle wave functions and eigenenergies

comply with a Schrodinger equation of the form

3
—\‘—ﬁ——\f+l'(r) ¥(r) = E¥(r). (1)
2m*(r)

Besides its practical applications, the study of quantum
mechanical systems with a position dependent mass also
raises interesting conceptual problems of a fundamental na-
ture. For example, Lévy-Leblond has recently discussed the
quantum mechanical problem of a particle with position de-
pendent mass in connection with the concept of instantaneous
Galilean invariance [10]. The path integral approach to quan-
tum mechanics for systems with nonconstant mass has also
been studied [11].

The aims of the present work are: (a) to study, taking into
account effects of a mass dependence on position, the bound
states of some simple one dimensional systems usually dis-
cussed in elementary texts on quantum mechanics; and (b) to
illustrate the effect on the density of bound state energy levels
of a position dependent mass.

The paper is organized as follows. In Sect. 2 we provide a
brief review ol the Schrédinger equation for systems with po-
sition dependent effective mass. Sect. 3 deals with the eigen-
functions and cigenenergies of a finite potential well with dif-
ferentinside and outside masses. In Sect. 4 we consider an in-
finite potential well with a mass step. In Sect. 5 we compute
numerically the eigenfunctions and energy eigenvalues cor-
responding to a particle with a Gaussian shaped #-dependent
effective mass in an harmonic oscillator potential. Finally,
some conclusions are drawn in Sect. 6.
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2. Schrodinger equation with a position depen-
dent effective mass

The one-dimensional time-independent Schrodinger equa-
tion associated with a particle endowed with a position de-
pendent effective mass reads [4, 5, 10]

WOl 2e  d [ n ] d¥
2 (x) | da? dr [2m(x) | dx

+ V()P (x) = E¥(r), (2)

where 11(.) stands for the particle’s effective mass, 17(.r) de-
notes the potential, ¥(2:) is the particle’s wave function (wf)
and his Planck’s constant. This equation can be cast as

HY = EV, 3)
where the Hamiltonian operator His given by
; 2 1 ’
H=F P+ V(). 4)
[‘Zm(.r)] +¥ia) (

The Schrodinger equation (2) can be derived from an en-
ergy variational principle akin to the standard one, that yields
the wave equation for systems with constant mass. Let us
consider the energy expectation value

3 d K d
= /f(.:-\Tl(.l-) [— e ———'711)(.!') e o

Y L 10 N
¥‘/ = 27)1(.1?]( da ) *Via¥ (1)]‘ e

It is easy to verify that the minimization of the mean en-
erey (H) under the normalization constraint (¥|¥) = 1 leads
to the differential equation (2). Actually, the Schriodinger
cquation (1) that appears in the EDF formalism is essentially
obtained in the above fashion [12]. Furthermore, the varia-
tional principle will prove useful in order to understand some
qualitative features of the energy eigenfunctions of systems
with a position dependent mass.

An important technique used to deal with the Schriadinger
equation (2) is based on the change of variables [12]

1(1)} T(x)

T(r) = ) u(x), (6)

m

where 1 stands for “true” naked mass of the particle.
It is straightforward to verify that the function w(xr) com-
plies with the differential equation

,,jl—-u'/ + W(z, E)u(x) = Eu(a), 7
2m
where
. 5 m(x) | .. m(z) 12 ”
” L = — S ‘ o
o L [ (=) 2h? (2”1(1)

The differential equation (7) for 1 () looks like the ordinary
(f.e., constant mass) time-independent Schrodinger equation,
but with an energy dependent potential function W (x, E).
The potential W is usually referred to as the local equivalent
potential (LEP).

The wave function connection rules across an abrupt in-
terface (i.e., a discontinuity in the effective mass) associated
to the Schrédinger equation (2) are: ) the continuity of the
wave function,

W_ = Wy, . 9)

and ii) the continuity of W' /i (),

g ﬂ) 7(—1 . 10)
m(x) dr ) \om(x) dr 5 (

where the subindexes — and + denote, respectively, the left
and right hand sides of the mass discontinuity.

3. Finite potential well with different inside and
outside masses

In this section we are going to compute the bound state
eigenenergies ol a finite potential well with an effective mass
inside different from that outside the well. The corresponding
potential V() is given by

V() =0, |o] <L/2.

lv] > L/2, (1

where L is the width of the well. The position dependent ef-
fective mass is (see Fig. la)

max) =my,

le| < Lj2.
le| > L/2. (12)

mia) = ma.

The wave functions inside [V ()] and outside [¥s(x)]
the well verify. respectively, the differential equations

b i
*(?) [ =58 =
and
r’2 " r
—()—) ¥, =(E-V)¥,, (14)
EAES)

where E stands for the concomitant energy eigenvalue. Fol-
lowing the usual procedure we propose the forms

¥y = sin ko (odd solutions),

¥y = cos ke (even solutions), (15)
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FiGure 1. (a) A square potential well of finite depht. The eftective
mass adopts the values ny inside the well and 12 outside it. (b) An
infinite potential well with a mass step. The effective mass is equal
10 iy (left side of the well) and to . (right side of the well).

for the (unnormalized) wave function inside the well, the cos
and sin solutions describing even and odd eigenfunctions, re-
spectively. On the other hand, the wave function outside the
well has the appearance

Ty = Cexp(—k'|¢]). (16)

Replacing the ansatzs (15) and (16) in Eqs. (13) and (14), we
obtain, respectively,

A'2=2”’;iEs (17
and

L2 = %ﬁ (18)

1
These two equations immediately lead to
, = - o
lizn(')r',’,'l"‘ —1) o (19)

where

(20)

The boundary conditions (9) and (10) at . = +L/2 are

’ k'L
0S8 (%) Cox;)( =

for the odd ones. Equations (21) and (22) lead, respectively,

o
( WL (Hll N oA
tan | — = —— =1 ;
.2 ) IH;)) A')

(/.'L o i
tan [ — | = — { — i
2 1y k!

which can be recast under the guise

(even) (23)
and

(odd) 24)

tan: = a————, (25)
and
tans = —;. 26
avD?*a? — 2 S
where
kL . s L*
r=—, and D= m_)—) 27)
2 2h°

It will prove convenient for our forthcoming discussion to ex-
press the masses 12 » in terms of a single variable 1 defined
by

nyo=am,  and s = . (28)
The effective mass value m adopted by our particle when it is
outside the well is regarded to coincide with the “true” mass
of the particle. In other words, m is the mass of the parti-
cle when it can be regarded as a free particle that does not
interact with its environment.

The solutions = of Eq. (25) provide the energy eigenval-
ues associated with the bound states of even parity, while the
roots of Eq. (26) correspond to the eigenenergies of the bound
states with odd parity. In the particular case of @ = 1 (ie.,
= ma = ), Egs. (25) and (26) reduce to the well-known
transcendental equations determining the bound eigenvalues
of a finite square well [13]. In Fig. 2 we depict the behav-
ior, as a function of the parameter a, ol the energy eigenval-
ues associated with the first five bound eigenstates of a finite
well with D = 7. This value of D determines, in the case of
a = 1, a linite square well with five bound states. The num-
ber NV ol bound states is not constant for different values of av.
It is determined by the integer part of 2a D /7, according to

2 B AN
K= 14 Bt | = (L—) . (29)

T 207

The above expression implies that for a small enough value
of o there is only one bound state. regardless of the value of
well parameter D. The number of bound states, for a given
value of D, is an increasing function of . The roots z of
Eqs. (25) and (20) lie in the interval

0 <5< o h): (30)
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F1GURE 2. The lirst five energy eigenvalues of a finite square well
with different “inside”™ and “outside™ masses, as a function of the
parameter «v. We take o = w2 =1 and D = 7 [see Eq. (27)]. The
energy is given in units of 1/L%.

which means that the eigenenergies belong to the interval

2h* D?
.

< kB < —— =
b mL?

(31)
In the case of constant mass this last equation simply means
that the enerey of a bound state must belong to [0, V7]. How-
ever, the fact that these bounds on the energy spectra do not
depend on o, while the number of bound states increases with
«v, has an interesting physical consecuence: the density of
states is an increasing function of «e. More specifically, when
the effective mass inside the well is lower than the effective
mass outside (a < 1), the density of states of the bound spec-
tra is lower than the density of states associated with the con-
stant mass situation. The oposite behavior occurs when the
effective mass inside the well is larger than the mass outside.
This effect on the density of states can be clearly appreciated
in Fig. 2.

4. Infinite potential well with mass step

In this section we study the bound state eigenenergies of an
infinite potential well in which an effective mass step ex-
ists: the value 1y of the effective mass in the left side of
the well (. € [0, L/2]) differs form its right side counterpart
my (€ [L/2, L]). The potential 17(.x) is given by

Vo) =0 B g s by

Vig) =00, <00 2> L, (32)

where /. is the width of the well. The position dependent ef-
lective mass is given by (see Fig. 1b)

m(x) = my,

mfx) =ma;, L2 <@ < L. (33)

The wave functions W () (left side) and W, () (right
side) verify, respectively, the differential equations

— _ﬁ:__ \IA'I’
20

a ("_) V! = EU,. (35)
29 -

Ev¥y, (34)

and

|

where £ stands for the concomitant energy eigenvalue and
U, (0) = ¥,(L) = 0. Following the usual procedure we pro-
pose the ansatzs

Wy () = sin ko, (36)
and
Uy () = Csinkya 4+ C' cos bz, (37

for the (unnormalized) wave functions in each side of the
well. The energy E is now given by

he 2 ]2
Pt PR (38)
21 2my
which implies that
A‘g = ’”—'{Iq (39)
.y

The connection conditions (9) and (10) at x = L /2 are now
sinz = C'sinyz: + C' cosyz,
~veos s = Ccosyz — C' sinyz, (40)
where ky = k,z = Lk/2,andy = \/m The boundary
conditionon ¥, atr = L is
Csin2yz + Meos 232 = 0. (41)
Solving for €' in the above equation and replacing in (40) we
arrive at
sinz = C (sinvyz — tan 2z cosyz) , (42)

and

£
cos: = — (cosvyz + tan2yzsinvyz) . (43)

&Y

whose ratio is

tan z

sinyz — tan 29z cosys
"\ cosyz 4 tan 2z sinyz

==y 2,

(44)

The roots z of this transcendental equation determine the
bound state eigenenergies ol the mass-step infinite well. We
find, for all values of ~, an infinite number of roots and, cor-
respondingly, an infinite number of bound states (as it hap-
pens, of course, in the v = 1 instance that describes the well-
known infinite well with constant mass). The eigenenergies
are given by

2hret

E=— 5
my L? ()
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FIGURE 3. The first five energy eigenvalues of an infinite square
well with a mass step as a function of the parameter 4. We sel
Ii = 1y = 1. The energy is given in units of 1/L?

Il =y is a solution of Eq. (44) for a given vy, then 2z, =
=1 /71 is a root of a similar equation but with a new value
of  given by 2 = 1/4,. This symmetry of Eq. (44) is just
a consequence of the fact that interchanging the masses m
and 11, we end up with essentially the same physical situa-
tion as the original one. More specifically, by interchanging
the masses we obtain a mirror image of the original problem.
It is clear from the above considerations that there is no loss
of generality if we restrict our forthcoming discussion to val-
ues of ~ larger than unity (that is, to mass steps where the
left handside mass mi is smaller than the rigth hand side one
o).

The behavior of the first five energy eigenvalues as a func-
tion of v is depicted in Fig. 3. We can see that the density of
states increases with 7.

The transcendental Eq. (44) can be solved exactly in the
particular case of v = 2. For such a value the equation veri-
fied by the variable = reduces itself to

tan z(tan® z = 5) = 0. (46)
The corresponding eigenvalues of the energy are

2h% (n + 1)2x2

E“):‘—'—'—‘w =12 ...} @7

n _”“LZ (” ) )

B 2h* (arctan \/)5 + nm)? , (n=1,2,...), (48)
my L2

and

P L ok e ) S O

my L2

It is also instructive to consider the limiting situation of
7 — o In that case, the roots of the transcendental Eq. (44)
tend 1o (see Fig. 4)

Zn = —, n=12,...) (50)
v

SR

-2

B Y T

T

JLALIJAJ

1

o

FIGURE 4. The intersections of the curves tan z and — tan vz, for
7 = 4, yield the values of = = AL /2 that determine the eigencner-
gies of the infinite potential well with a mass step.

and the corresponding cigenenergies approach the limiting
values

v

2h° r\? 2N ,
B (“l) e S ¥ e gW SN

= - -
iy L2 mo L2

The above equation implics that, when 7 is much larger
than 11y, the energy eigenvalues of the system behave as if the
particle had a constant mass equal to 11 and were confined
to an infinite well ol lenght L /2. As far as the energy spec-
trum is concerned, “the larger mass wins™. It is also worth
considering the behavior, as 7 — ~c, of the coelficients C
and C' appearing in the expresion for Us (). Itis casy to see
trom Eqs. (42) and (43) that, in that limit,

¢ —0, (52)
and
C=(-1)". (53)

The above two equations imply that, for large values of ~,

nm

2"

I

U5 (x) = (—1)"ysin (54)
Summing up, when m» > 1, the eigenstates of the system
behave in such a way that

e The particle is almost completely confined to the part
of the well where the etfective mass adopts its largest
value ni.

¢ Within that part of the well where the mass value is
1, the wave function looks like that of a particle of
mass m» in a well of lenght L /2.

e The eigenenergies approach those of an infinite well of
lenght L/2 with constant mass 111,
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FIGURE 5. The first ten energy eigenvalues of the harmonic oscil-
lator potential % /2 with a position dependent effective mass given
by m{x) = [1 + Jexp(—2*)] ", as a function of the parameter /3.

5. An harmonic oscillator model with position
dependent mass

In this section we consider a one dimensional harmonic po-
s 4 2 ye ¢
tential (setting ™ /2m = 1/2)

Vi) = 12— (55)
along with an effective mass given by
2
an:'(;r - %(1 + ey, (56)
We have that
A= 0= mile) <1,
B <0=m(z)> 1 (5T

The Schrodinger equation (6) has been solved numerically by
recourse to the Numerov standard numerical algorithm [14].
The corresponding first ten eigenvalues are depicted in Fig. 5
for 3 € (—1,100]. For clarity’s sake the even and the odd
states are displayed separatedly. Notice that the effect of a
smooth position dependent effective mass on the energy lev-
cls is qualitatively the same as the one produced by a piece-
wise flat effective mass. The level density is a monotonous
decreasing function of the parameter 3. As /3 increases, and
the effective mass () decreases, the gap between the en-
cray levels increases.

Since we now have both a smooth potential and a smooth
mass it is instructive to consider the associated local equiv-
alent potential (8). The LEPs corresponding to the first ten
cigenstates and /3 = 20 are depicted in Fig. 6a. It is inter-
esting 1o notice that the LEP becomes, in the case ol ex-
cited states, a bistable potential. Moreover. the two concomi-
tant potential wells become deeper as we consider greater
cigenenergies. As aconsequence, the probability density as-

1.0
08 -|
X 05

0.4

02 -

FIGURE 6. (a) The effective mass mi(a) as a function of the coor-
dinate r for 6 = 20 and the associated local equivalent potential
for various even (continuous line) and odd (dashed line) cigenstates
of the harmonic potential with effective mass. For comparison, the
harmonic oscillator potential (dotted line) is also shown. (b) Same
as Fig, 6afor ;3 = =1/2,
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FIGURE 7. The probability density function p(x) = 312 [¥(r)[?
corresponding to ten particles occupying the first single particle
states (one particle per level). computed for the same (J values as in
Fig. 6. Notice that /# = 0 corresponds to the constant mass case.

sociated with the eigenfunctions of the system will tend to be
small near = = (. The neighbourhood of » = (), where the ef-
fective mass adopts its lowest value, acts as a “repeller”. This
is clearly shown in Fig. 7, where we depict the probability
density p(x) = ngl [W(.r)|* corresponding to ten particles
occupying the first ten single particle states (one particle per
level).

The LEPs for the first ten eigenstates and § = —1/2 are
displayed in Fig. 6b. In this case the effective mass nearz = 0
is larger than the one at || — oo, while the LEP function at-
tains a deeper minimum near @ = (). As in the previous case,
the effect due to the position dependent mass becomes more
cvident for highly excited states.

For both positive and negative values of the parameter /3,
the wave lunction tends to concentrate towards those places
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in which the effective mass adopts its largest values (see
Fig. 7). This behavior mimics that exhibited by the eigen-
states of the infinite well with a mass step. The features ex-
hibited by the cigenfunctions of systems with variable mass
can be nicely interpreted in terms of the energy variational
principle discussed in Sec.t I1. By inspection of the mean en-
erey (5) it is not hard to realize that, in order to minimize the
Kinetic energy contribution to (H), the wave function must
avoid those regions in which the effective mass adopts small

values.

6. Conclusions

We have studied the bound states of three important one di-
mensional quantum systems with a position dependent etfec-
tive mass. For two ol the systems considered, i.e., an infinite
potential well with a mass step and a finite square well with
different “inside™ and “outside™ masses, the energy eigen-

functions and eigenvalues can be obtained by solving an ap-
propriate transcendental equation. Our third example, involv-
ing a smooth potential and a smooth cffective mass. is solved
by recourse to the numerical integration of the corresponding
Schradinger equation.

The concept of effective mass plays an important role
in many applications ol quantum mechanics. The examples
anaiysed in the present work illustrate some aspects of the
behavior of quantum systems with variable masses. We be-
lieve that our discussion shows that the quantum mechanics
of systems with effective masses can be profitably discussed
at the level of elementary quantum mechanics courses.
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