Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-21T14:07:17Z
dc.date.available 2021-09-21T14:07:17Z
dc.date.issued 2011
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125248
dc.description.abstract We introduce in this work a set of strategies for improving the piecing-together step in local-to-global Markov networks structure learning algorithms. For Markov networks, Local-to-global algorithms decompose the problem of learning a complete independence structure with n variables into n independent Markov blanket learning problems. On a second step these algorithms piece-together all the learned Markov blankets into a global structure using an \OR rule". Insucient data may result in incorrect learning of Markov blankets, with con in their decision on edge inclusion when, for two variables X and Y , X is in the blanket of Y , but Y is not in the blanket of X. In such cases the \OR rule" always decides to add the edge, making mistakes when such edge does not exist. Our contribution is alternative strategies. The first alternative is based on the \AND rule" which proposes to add an edge between two variables X and Y to the global structure if they mutually belong to its respective Markov blankets. The other alternative rule is based on the probability of the edges and aims to solve an inconsistency by comparing the probability of edge existence with the probability of edge absence, and taking the more probable for deciding to add or remove such edge. At the end of the work, we show that inconsistencies are an important source of errors in these algorithms, and demonstrate empirically interesting improvements in the quality of learned structures, using this new piecing-together alternative instead of the basic \OR rule". en
dc.format.extent 96-107 es
dc.language en es
dc.subject Markov networks es
dc.subject structure learning es
dc.subject independence-based es
dc.subject global learning es
dc.title Strategies for piecing-together local-to-global markov network learning algorithms es
dc.type Objeto de conferencia es
sedici.identifier.issn 1850-2784 es
sedici.creator.person Schlüter, Federico es
sedici.creator.person Bromberg, Facundo es
sedici.creator.person Abraham, Laura es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2011-08
sedici.relation.event XII Argentine Symposium on Artificial Intelligence (ASAI 2011) (XL JAIIO, Córdoba, 29 y 30 de agosto de 2011) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)