Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2021-09-21T14:14:48Z
dc.date.available 2021-09-21T14:14:48Z
dc.date.issued 2011
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/125251
dc.description.abstract In this work, we present an instantiation of our framework for Hierarchical Distance-based Conceptual Clustering (HDCC) using sequences, a particular kind of structured data. We analyze the relationship between distances and generalization operators for sequences in the context of HDCC. HDCC is a general approach to conceptual clustering that extends the traditional algorithm for hierarchical clustering by producing conceptual generalizations of the discovered clusters. Since the approach is general, it allows combining the flexibility of changing distances for different data types at the same time that we take advantage of the interpretability offered by the obtained concepts, which is central for descriptive data mining tasks. We propose here different generalization operators for sequences and analyze how they work together with the edit and linkage distances in HDCC. This analysis is carried out based on three different properties for generalization operators and three different levels of agreement between the clustering hierarchy obtained from the linkage distance and the hierarchy obtained by using generalization operators. en
dc.format.extent 128-139 es
dc.language en es
dc.subject conceptual clustering es
dc.subject distance based clustering es
dc.subject Linked lists es
dc.subject sequences es
dc.subject edit distance es
dc.title An instantiation for sequences of hierarchical distance-based conceptual clustering es
dc.type Objeto de conferencia es
sedici.identifier.issn 1850-2784 es
sedici.creator.person Funes, Ana es
sedici.creator.person Ramírez-Quintana, María José es
sedici.creator.person Hernández-Orallo, Jose es
sedici.creator.person Ferri, Cèsar es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2011-08
sedici.relation.event XII Argentine Symposium on Artificial Intelligence (ASAI 2011) (XL JAIIO, Córdoba, 29 y 30 de agosto de 2011) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)