Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-04T14:41:00Z
dc.date.available 2022-04-04T14:41:00Z
dc.date.issued 2020-09
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/133816
dc.description.abstract This Letter describes a search for narrowly resonant new physics using a machine-learning anomaly detection procedure that does not rely on signal simulations for developing the analysis selection. Weakly supervised learning is used to train classifiers directly on data to enhance potential signals. The targeted topology is dijet events and the features used for machine learning are the masses of the two jets. The resulting analysis is essentially a three-dimensional search A → BC, for mA ∼ O(TeV), mB,mC ∼O(100  GeV) and B, C are reconstructed as large-radius jets, without paying a penalty associated with a large trials factor in the scan of the masses of the two jets. The full run 2 √s = 13  TeV pp collision dataset of 139  fb⁻¹ recorded by the ATLAS detector at the Large Hadron Collider is used for the search. There is no significant evidence of a localized excess in the dijet invariant mass spectrum between 1.8 and 8.2 TeV. Cross-section limits for narrow-width A, B, and C particles vary with mA, mB, and mC. For example, when mA = 3  TeV and mB ≳ 200  GeV, a production cross section between 1 and 5 fb is excluded at 95% confidence level, depending on mC. For certain masses, these limits are up to 10 times more sensitive than those obtained by the inclusive dijet search. These results are complementary to the dedicated searches for the case that B and C are standard model bosons. en
dc.language en es
dc.subject Hadronic decays es
dc.subject Hadron colliders es
dc.subject pp collisions es
dc.title Dijet Resonance Search with Weak Supervision Using √s = 13 TeV pp Collisions in the ATLAS Detector en
dc.type Articulo es
sedici.identifier.other doi:10.1103/physrevlett.125.131801 es
sedici.identifier.other pmid:33034503 es
sedici.identifier.issn 1079-7114 es
sedici.identifier.issn 0031-9007 es
sedici.creator.person Alonso, Francisco es
sedici.creator.person Arduh, Francisco Anuar es
sedici.creator.person Dova, María Teresa es
sedici.creator.person Hoya, Joaquín es
sedici.creator.person Monticelli, Fernando Gabriel es
sedici.creator.person Orellana, Gonzalo Enrique es
sedici.creator.person Wahlberg, Hernán Pablo es
sedici.creator.corporate The ATLAS Collaboration es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Física La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Physical Review Letters es
sedici.relation.journalVolumeAndIssue vol. 125, no. 13 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)