Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-04-27T16:46:10Z
dc.date.available 2022-04-27T16:46:10Z
dc.date.issued 2017-06-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135161
dc.description.abstract Evapotranspiration is an important component of hydrologic balance and represent essential information for irrigation scheduling and water resources planning. Sometimes, the use of the recommended Penman-Monteith method is restricted by the lack of input variables and, therefore, empirical methods become essential.The study aimed: a) to develop and evaluate the performance of models based on artificial neural networks (ANN) to estimate daily values of reference evapotranspiration (ET0PM) with a limited number of input variables and b)to apply methods of knowledge extraction based on connection weights and sensitivity analysis to better understanding of ANN. Daily evapotranspiration values computed following the Penman-Monteith equation (ET0PM), were used as target outputs for the implementation of the ANN. Data of global radiation (Rg), net radiation (Rn) and extraterrestrial radiation (RTA) were alternated in combinations with air temperature (Ta), vapor pressure deficit (DPV) and wind (u) as inputs to networksof type multilayer perceptron. Also, combinations with basis in RTA and minimum and maximum air temperatures(Tmin, Tmax) were tested. The ANN with best performance for each combination of inputs were retained to evaluate the performance based on multi-criteria analysis. According to the results, it can be concluded that it is possible to estimate accurately daily ET0PM values. Air temperature and deficit of pressure vapor were found to be more effective than wind velocity in modelling ET0, whichever the radiation (Rn, Rg or RTA) used as input.A decomposition method based on Garson’s algorithm was applied to quantify the relative importance for each input variable. Sensitivity analysis was also performed to identify relevant inputs and quantify the risk of a certain combination of inputs on target values. The application of complementary proceduresin evaluation of ANN models is discussed, paying attentionespecially on detection of the better predicting variables and analysis of errors. en
dc.format.extent 68-79 es
dc.language en es
dc.subject Radiation es
dc.subject Deficit Pressure Vapor es
dc.subject Synaptic Weight es
dc.subject Decomposition Method es
dc.subject Sensitivity Analysis es
dc.title Knowledge extraction from artificial neural networks (ANN) trained to estimate daily reference evapotranspiration in southeastern of rolling pampas of Argentina en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/23 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Irigoyen, Andrea Inés es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.relation.event VIII Congreso Argentino de AgroInformática (CAI-2016) - JAIIO 45 (Tres de Febrero, 2016) es
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 16 es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/57431 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)