Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2022-05-05T18:06:29Z
dc.date.available 2022-05-05T18:06:29Z
dc.date.issued 2007-06-26
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/135733
dc.description.abstract A number of statistical methods based on molecular data are currently available for assigning new inbreds to heterotic groups in maize (Zea mays L), with variable results. We conjecture that the main flaw of such models is that they do not capture the non-linear relation between parental data and progeny performance. In this paper, we propose the use of supervised learning methods for handling such non-linearity. Standard and novel multiclassification methods are evaluated. Best results are obtained with the recently introduced class of multiclass, binary based,Recursive ECOC (RECOC) classifiers. RECOC classifiers are inspired in state of art Coding Theory solutions for the problem of transmitting symbols over noisy channels. For molecular marker data the noisy channel abstraction embeds the hardness of learning a classification function from noisy and scarce samples. Field data (top crosses between 26 inbreed lines and four tester populations), processed by cluster analysis in a previous work, was integrated with molecular marker data and used for training RECOC – AdaBoost Support Vector Machines RBF classifiers. A 34.10 % 3-CV error was achieved, clearly improving previously reported results on this task. en
dc.format.extent 24-30 es
dc.language en es
dc.subject Machine learning es
dc.subject maize es
dc.subject heterotic group es
dc.title A classification approach for heterotic performance prediction based on molecular marker data en
dc.type Articulo es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/EJS/article/view/94 es
sedici.identifier.issn 1514-6774 es
sedici.creator.person Ornella, Leonardo es
sedici.creator.person Tapia, Elizabeth es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Electronic Journal of SADIO es
sedici.relation.journalVolumeAndIssue vol. 7 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)