Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-03-01T15:33:31Z
dc.date.available 2023-03-01T15:33:31Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/149435
dc.description.abstract Quality flaws prediction in Wikipedia is an ongoing research trend. In particular, in this work we tackle the problem of automatically predicting four out of the ten most frequent quality flaws; namely: No footnotes, Notability, Primary Sources and Refmprove. Different deep learning state-of-the-art approaches were evaluated on the test corpus from the 1st International Competition on Quality Flaw Prediction in Wikipedia; a well-known uniform evaluation corpus from this research field. Particularly, the results show that TabNet reachs or improves the existing benchmarks for the Notability and Refmprove flaws, and performs in a very competitive way for the other two remaining flaws. es
dc.format.extent 375-384 es
dc.language es es
dc.subject Wikipedia es
dc.subject Information Quality es
dc.subject Quality Flaws Prediction es
dc.subject Deep Learning es
dc.title Quality Flaws Prediction in Wikipedia by Using Deep Learning Approaches es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-1364-31-2 es
sedici.creator.person Capodici, Gianfranco es
sedici.creator.person Bazán Pereyra, Gerónimo es
sedici.creator.person Bonnin, Rodolfo es
sedici.creator.person Ferretti, Edgardo es
sedici.description.note XIX Workshop base de datos y Minería de datos (WBDMD) es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022-10
sedici.relation.event XXVIII Congreso Argentino de Ciencias de la Computación (CACIC) (La Rioja, 3 al 6 de octubre de 2022) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/149102 es
sedici.relation.bookTitle Libro de actas - XXVIII Congreso Argentino de Ciencias de la Computación - CACIC 2022 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)