Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-04-18T17:00:42Z
dc.date.available 2023-04-18T17:00:42Z
dc.date.issued 2022
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/151667
dc.description.abstract Nowadays, sepsis is considered a global burden disease with anannual incidence of three million neonatal cases. Nevertheless, there are no homogeneous criteria for neonatal sepsis. Furthermore, adult sepsis scores don’t work properly in neonatal Intensive Care Units (ICUs) settings due to the specific characteristics of the neonates' immune systems. This work describes and surveys a machine-learning computer-aided diagnosis approach for predicting sepsis mortality in neonatal ICUs. The survey is based on a retrospective cohort study in which each patient has an initial sepsis-related diagnosis in the first 24h after ICU admission. Our experiments are based on four different machine-learning techniques: decision trees, random forests, support vector machines and artificial neural networks. The predictive power was assessed using accuracy, sensitivity, and specificity. The importance of the variables was obtained automatically through data science techniques using R. The approach with the best performance was the random forest, which achieves an accuracy of 97% in the prediction of mortality. en
dc.format.extent 64-73 es
dc.language en es
dc.subject Sepsis es
dc.subject CAD es
dc.subject NICU es
dc.subject MIMIC-III es
dc.subject Artificial Intelligence es
dc.title Computer aided prediction of sepsis-related mortality risk in neonatal intensive care units en
dc.type Objeto de conferencia es
sedici.identifier.uri https://publicaciones.sadio.org.ar/index.php/JAIIO/article/download/373/311 es
sedici.identifier.issn 2451-7496 es
sedici.creator.person Muñoz Lezcano, Sergio es
sedici.creator.person López, Fernando es
sedici.creator.person Corbi, Alberto es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2022-10
sedici.relation.event Congreso Argentino de Informática y Salud (CAIS 2022) (JAIIO 51, UAI, 17 al 28 de octubre de 2022) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)