Busque entre los 170597 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2023-07-11T17:14:20Z | |
dc.date.available | 2023-07-11T17:14:20Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/155423 | |
dc.description.abstract | Nowadays, the sizes of databases in real-world applications are around TeraByte or PetaByte. Therefore, training neural networks in reasonable times is challenging and requires high-cost computational architectures. OS-ELM is a variant of ELM, proposed for real-world applications. This algorithm allows training with new data using the previous results without reusing the previous dataset. In this work, we present a parallel model of OS-ELM for classification problems using large-scale databases. The model consists of training several OS-ELM using multithreaded programming. The training dataset is distributed according to the number of working threads. Then, the test dataset is classified by all pre-trained OS-ELMs. Finally, the test dataset is classified using a frequency criterion. Preliminary results show that increasing the number of threads decreases the training time without significantly affecting the test accuracy of each OS-ELM. | en |
dc.format.extent | 19-23 | es |
dc.language | en | es |
dc.subject | Parallel computing | es |
dc.subject | High performance computing | es |
dc.subject | Extreme learning machine | es |
dc.subject | Fingerprint classification | es |
dc.title | Parallel model of online sequential extreme learning machines for classification problems with large-scale databases | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-950-34-2271-7 | es |
sedici.creator.person | Gelvez-Almeida, Elkin | es |
sedici.creator.person | Barrientos, Ricardo J. | es |
sedici.creator.person | Vilches-Ponce, Karina | es |
sedici.creator.person | Mora, Marco | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Facultad de Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2023-06 | |
sedici.relation.event | XI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/155281 | es |
sedici.relation.bookTitle | XI Jornadas de Cloud Computing, Big Data & Emerging Topics | es |