Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2023-07-11T17:14:20Z
dc.date.available 2023-07-11T17:14:20Z
dc.date.issued 2023
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/155423
dc.description.abstract Nowadays, the sizes of databases in real-world applications are around TeraByte or PetaByte. Therefore, training neural networks in reasonable times is challenging and requires high-cost computational architectures. OS-ELM is a variant of ELM, proposed for real-world applications. This algorithm allows training with new data using the previous results without reusing the previous dataset. In this work, we present a parallel model of OS-ELM for classification problems using large-scale databases. The model consists of training several OS-ELM using multithreaded programming. The training dataset is distributed according to the number of working threads. Then, the test dataset is classified by all pre-trained OS-ELMs. Finally, the test dataset is classified using a frequency criterion. Preliminary results show that increasing the number of threads decreases the training time without significantly affecting the test accuracy of each OS-ELM. en
dc.format.extent 19-23 es
dc.language en es
dc.subject Parallel computing es
dc.subject High performance computing es
dc.subject Extreme learning machine es
dc.subject Fingerprint classification es
dc.title Parallel model of online sequential extreme learning machines for classification problems with large-scale databases en
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-950-34-2271-7 es
sedici.creator.person Gelvez-Almeida, Elkin es
sedici.creator.person Barrientos, Ricardo J. es
sedici.creator.person Vilches-Ponce, Karina es
sedici.creator.person Mora, Marco es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-06
sedici.relation.event XI Jornadas de Cloud Computing, Big Data & Emerging Topics (La Plata, 27 al 29 de junio de 2023) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith http://sedici.unlp.edu.ar/handle/10915/155281 es
sedici.relation.bookTitle XI Jornadas de Cloud Computing, Big Data & Emerging Topics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)