Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-03-05T18:23:06Z
dc.date.available 2024-03-05T18:23:06Z
dc.date.issued 1969
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/163473
dc.description.abstract In |5| we have defined the category of N-differentiable (not necessarily reduced) spaces and have described certain subcategories that seem to be of special interest. For one of these restricted categories we have, for example, established certain embedding theorems of the classical type for manifolds. At this point then one should describe certain constructions to "smooth” differentiable spaces, so that starting with a general space, one ends with a space in a more restricted, but nicer class. By this we are able, for example, to extend certain embedding results of |5| to a far more general class of differentiable spaces (see |7|). en
dc.language en es
dc.title Differential forms on differentiable spaces en
dc.type Publicacion seriada es
sedici.title.subtitle Notas de Matemática, 7 es
sedici.creator.person Spallek, Karlheinz es
sedici.description.note Material digitalizado en SEDICI gracias a la colaboración de la Biblioteca del Departamento de Matemática de la Facultad de Ciencias Exactas (UNLP). es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Publicacion seriada es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.relation.journalTitle Notas de Matemática es
sedici.relation.journalVolumeAndIssue no. 7 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)