Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2024-04-19T14:44:50Z
dc.date.available 2024-04-19T14:44:50Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/165065
dc.description.abstract El uso creciente de algoritmos de generación de dominios (DGA) para la comunicación entre servidores de comando y control (C&C) plantea serios desafíos en el proceso de detección de botnets. Los especialistas en seguridad deben estar en permanente actualización de las nuevas técnicas a fin de poder realizar una detección eficiente. En este trabajo, se propone el uso de una red neuronal que combina las técnicas de Convolutional Neural Network (CNN) y Long Short-Term Memory (LSTM) para generar nombres de dominios de manera algorítmica. El objetivo de contar con un generador de nombres de dominio es la de poder utilizar la información provista por el mismo en el proceso de detección de los mismos. Por lo que para su validación se realizaron pruebas a los dominios generados utilizando un detector de DGA y se encontró que los nombres generados no fueron fácilmente identificados como generados por DGA. Dicho detector mostró una exactitud de un 10%. Estos resultados sugieren que el generador de nombres propuesto puede ser una herramienta efectiva para detectar limitaciones en las técnicas de detección de DGA. es
dc.format.extent 591-602 es
dc.language es es
dc.subject DGA es
dc.subject seguridad informática es
dc.subject CNN es
dc.subject LSTM es
dc.subject nombres de dominio es
dc.title Generación de nombres de dominios mediante redes neuronales híbridas CNN-LSTM es
dc.type Objeto de conferencia es
sedici.identifier.isbn 978-987-9285-51-0 es
sedici.creator.person Leyva La O, Reynier es
sedici.creator.person González, Rodrigo es
sedici.creator.person Catania, Carlos A. es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Red de Universidades con Carreras en Informática es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.date.exposure 2023-10
sedici.relation.event XXIX Congreso Argentino de Ciencias de la Computación (CACIC) (Luján, 9 al 12 de octubre de 2023) es
sedici.description.peerReview peer-review es
sedici.relation.isRelatedWith https://sedici.unlp.edu.ar/handle/10915/163107 es
sedici.relation.bookTitle Libro de actas - XXIX Congreso Argentino de Ciencias de la Computación - CACIC 2023 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)