Busque entre los 170948 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2024-04-19T14:44:50Z | |
dc.date.available | 2024-04-19T14:44:50Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/165065 | |
dc.description.abstract | El uso creciente de algoritmos de generación de dominios (DGA) para la comunicación entre servidores de comando y control (C&C) plantea serios desafíos en el proceso de detección de botnets. Los especialistas en seguridad deben estar en permanente actualización de las nuevas técnicas a fin de poder realizar una detección eficiente. En este trabajo, se propone el uso de una red neuronal que combina las técnicas de Convolutional Neural Network (CNN) y Long Short-Term Memory (LSTM) para generar nombres de dominios de manera algorítmica. El objetivo de contar con un generador de nombres de dominio es la de poder utilizar la información provista por el mismo en el proceso de detección de los mismos. Por lo que para su validación se realizaron pruebas a los dominios generados utilizando un detector de DGA y se encontró que los nombres generados no fueron fácilmente identificados como generados por DGA. Dicho detector mostró una exactitud de un 10%. Estos resultados sugieren que el generador de nombres propuesto puede ser una herramienta efectiva para detectar limitaciones en las técnicas de detección de DGA. | es |
dc.format.extent | 591-602 | es |
dc.language | es | es |
dc.subject | DGA | es |
dc.subject | seguridad informática | es |
dc.subject | CNN | es |
dc.subject | LSTM | es |
dc.subject | nombres de dominio | es |
dc.title | Generación de nombres de dominios mediante redes neuronales híbridas CNN-LSTM | es |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-987-9285-51-0 | es |
sedici.creator.person | Leyva La O, Reynier | es |
sedici.creator.person | González, Rodrigo | es |
sedici.creator.person | Catania, Carlos A. | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2023-10 | |
sedici.relation.event | XXIX Congreso Argentino de Ciencias de la Computación (CACIC) (Luján, 9 al 12 de octubre de 2023) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | https://sedici.unlp.edu.ar/handle/10915/163107 | es |
sedici.relation.bookTitle | Libro de actas - XXIX Congreso Argentino de Ciencias de la Computación - CACIC 2023 | es |