In English
In the standard paradigm of galaxy formation and evolution, the baryonic component of galaxies forms from the collapse and condensation of gas within dark matter haloes, and later grows from continuous accretion of gaseous mass, both in diffuse form and in mergers with other systems. After a first period of rapid and violent halo growth, the gas settles into a rotationally-supported structure, eventually giving rise to the formation of a stellar disc. Stars evolve and return chemically-processed gas and energy to the interstellar medium, mainly through Type II supernova explosions. In the disc region, the cosmological accretion of gas combines with the outflows resulting from supernovae, affecting the hydrodynamical and structural properties of the disc and producing gas flows in the vertical and radial directions. In this work, we use a simulation of the Auriga Project, a suite of magneto-hydrodynamical, zoom-in cosmological simulations of Milky Way-like galaxies, to study the temporal and radial dependencies of gas accretion onto the disc. We also investigate the disc evolution, focusing on the inside-out disc formation scenario, which is one of the fundamental hypotheses of chemical evolution models of the Galaxy.
In Spanish
En el paradigma estándar de formación y evolución de galaxias, la componente bariónica de las galaxias se forma a partir del colapso y la condensación de gas dentro de halos de materia oscura, y posteriormente crece como resultado de la acreción continua de material gaseoso, tanto en forma difusa como en colisiones con otros sistemas. Luego de un período inicial donde el crecimiento del halo es rápido y violento, el gas se establece en una estructura soportada por rotación a partir de la cual se forma, posteriormente, el disco estelar. Las estrellas evolucionan y retornan gas químicamente enriquecido al medio interestelar, principalmente a través de explosiones de supernova tipo II. En la región del disco, la acreción cosmológica de gas junto con los flujos salientes producidos por las supernovas afectan las propiedades hidrodinámicas y estructurales del disco, produciendo flujos de gas tanto verticales como radiales. En este trabajo, utilizamos una simulación del proyecto Auriga, un conjunto de simulaciones cosmológicas magnetohidrodinámicas del tipo zoom-in para estudiar las dependencias temporal y radial de la acreción de gas hacia el disco galáctico en galaxias espirales. Investigamos también la evolución del disco, haciendo énfasis en el escenario inside-out, una de las hipótesis fundamentales de los modelos de evolución química de la Galaxia.