Busque entre los 170948 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2025-02-14T14:52:38Z | |
dc.date.available | 2025-02-14T14:52:38Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/176523 | |
dc.description.abstract | App reviews in mobile app stores contain useful information which is used to improve applications and promote software evolution. This information is processed by automatic tools which prioritize reviews. In order to carry out this prioritization, reviews are decomposed into features like category and sentiment. Then, a weighted function assigns a weight to each feature and a review ranking is calculated. Unfortunately, in order to extract category and sentiment from reviews, its is required at least a classifier trained in an annotated corpus. Therefore this task is computational demanding. Thus, in this work, we propose Shannon Entropy as a simple feature which can replace standard features. Our results show that a Shannon Entropy based ranking is better than a standard ranking according to the NDCG metric. This result is promising even if we require fairness by means of algorithmic bias. Finally, we highlight a computational limit which appears in the search of the best ranking. | en |
dc.format.extent | 772-781 | es |
dc.language | en | es |
dc.subject | app reviews | es |
dc.subject | user feedback processing | es |
dc.subject | weighted function | es |
dc.subject | pipeline | es |
dc.subject | digits precision | es |
dc.subject | algorithmic bias | es |
dc.subject | feature extraction | es |
dc.title | Shannon Entropy is better Feature than Category and Sentiment in User Feedback Processing | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.isbn | 978-950-34-2428-5 | es |
sedici.creator.person | Rojas Paredes, Andrés | es |
sedici.creator.person | Mareco, Brenda | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Red de Universidades con Carreras en Informática | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
sedici.date.exposure | 2024-10 | |
sedici.relation.event | XXX Congreso Argentino de Ciencias de la Computación (CACIC) (La Plata, 7 al 11 de octubre de 2024) | es |
sedici.description.peerReview | peer-review | es |
sedici.relation.isRelatedWith | http://sedici.unlp.edu.ar/handle/10915/172755 | es |
sedici.relation.bookTitle | Libro de Actas - 30° Congreso Argentino de Ciencias de la Computación - CACIC 2024 | es |