Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2025-05-13T15:35:14Z
dc.date.available 2025-05-13T15:35:14Z
dc.date.issued 2024
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/178965
dc.identifier.uri https://doi.org/10.35537/10915/178965
dc.description.abstract En los últimos años, el rol de la topología como una herramienta para la comprensión de la física de la materia condensada se ha vuelto preponderante. En particular, en el área de sistemas magnéticos bidimensionales es usual la descripción de fenómenos en términos de soluciones topológicamente singulares, soluciones suaves topológicamente cargadas, teorías de campos topológicas, entre otras. La topología irrumpió en sistemas magnéticos con los trabajos de Berezinskii y los de Kosterlitz y Thouless, quienes mostraron que soluciones topológicamente singulares, los vórtices, jugaban un papel central en la transición de fase a temperatura finita de sistemas ferromagnéticos bidimensionales clásicos del tipo XY. Esta transición de fase, conocida como transición BKT, fue en principio inesperada debido al teorema de Mermin-Wagner, y consiste en la creación de pares de vórtice-antivórtice a temperatura finita que, al desaparearse a una temperatura crítica dada, decorrelacionan el sistema. La transición BKT dio origen a lo que hoy llamamos transiciones de fase topológicas y, más en particular, a las transiciones de fase mediadas por la aparición de defectos topológicos. Por defecto topológico nos referimos a irregularidades o disrupciones dentro de campos continuos o estados ordenados de la materia que no pueden ser removidos a través de transformaciones continuas del campo o del material en el que se encuentran; pueden tomar varias formas como puntos, líneas o superficies. Es en este contexto que la topología emerge en la física de la materia condensada como herramienta indispensable para el estudio de sistemas magnéticos. En el marco de esta tesis doctoral, nos centraremos en el estudio de sistemas magnéticos bidimensionales cuya naturaleza física requiere de la topología para su completa descripción. Nos centraremos en cuatro sistemas físicos particulares. En primer lugar, extenderemos el estudio del modelo XY al agregarle una interacción antisimétrica, la llamada interacción de Dzyaloshinskii-Moriya, y analizaremos cómo una modulación espacial de esta interacción nos lleva a una red de vórtices-antivórtices, dando lugar a una transición mediada por la desaparición de defectos topológicos que llamaremos transición de BKT inversa (iBKT). En segundo lugar, estudiaremos la dinámica de electrones sobre una red cristalina bajo un modelo simple de tight-binding con una interacción del tipo espín-órbita; en este contexto, la topología se vuelve crucial al estudiar la conductividad del sistema, exhibiéndose mediante la conductividad de Hall topológica. En una segunda parte de la tesis, veremos la influencia que tiene la curvatura intrínseca de la red sobre la física de un sistema magnético. En particular, analizaremos la influencia que tienen los espacios con curvatura negativa en sistemas magnéticos del tipo Ising. En una primera instancia, investigaremos un modelo de Ising en una teselación triangular del plano hiperbólico de curvatura negativa constante, y veremos cómo implementar de manera correcta condiciones de contorno periódicas que nos llevan a una topología no trivial en la compactificación del espacio base. Por último, estudiaremos un modelo de fractones en el plano hiperbólico cuyas excitaciones serán topológicas en el sentido de que involucran cambios macroscópicos en el sistema. Al considerar el plano hiperbólico como una rebanada a tiempo constante del espacio AdS₃, verificamos la conjetura AdS/CFT e incluso encontramos una relación lineal entre la temperatura de la CFT y el radio de un agujero negro en el plano. Ya sea en la descripción de excitaciones en un sistema físico, en las características que presentan las bandas de energía en el espacio recíproco o en las propiedades topológicas del espacio base en el que se definen distintos sistemas magnéticos, la topología resulta una herramienta central para comprender la física de la materia condensada. es
dc.language es es
dc.subject materia condensada es
dc.subject plano hiperbólico es
dc.subject Topología es
dc.title Aspectos topológicos de sistemas magnéticos bidimensionales es
dc.type Tesis es
sedici.creator.person Costa Durán, Alejo es
sedici.subject.materias Física es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Tesis de doctorado es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.contributor.director Sturla, Mauricio Bernardo es
sedici.contributor.codirector Grigera, Tomás Sebastián es
sedici.institucionDesarrollo Instituto de Física de Líquidos y Sistemas Biológicos es
thesis.degree.name Doctor en Ciencias Exactas, área Física es
thesis.degree.grantor Universidad Nacional de La Plata es
sedici.date.exposure 2024-12-16
sedici.acta 2208 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)