Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2016-04-07T13:09:36Z
dc.date.available 2016-04-07T13:09:36Z
dc.date.issued 2015
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/52105
dc.description.abstract In this work, new multi-classifier schemes for isolated word speech recognition based on the combination of standard Hidden Markov Models (HMMs) and Complementary Gaussian Mixture Models (CGMMs) are proposed. Typically, in speech recognition systems, each word or phoneme in the vocabulary is represented by a model trained with samples of each particular class. The recognition is then performed by computing which model best represents the input word/phoneme to be classified. In this paper, a novel classification strategy based on complementary class models is presented. A complementary model to a particular class j refers to a model that is trained with instances of all the considered classes, excepting the ones associated to that class j. The classification schemes proposed in this paper are evaluated over two audio-visual speech databases, considering acoustic noisy conditions. Experimental results show that improvements in the recognition rates through a wide range of signal to noise ratios (SNRs) are achieved with the proposed classification methodologies. en
dc.format.extent 113-120 es
dc.language en es
dc.subject Speech recognition and synthesis es
dc.subject audio-visual information fusion en
dc.subject decision level fusion en
dc.title Combination of Standard and Complementary Models for Audio-Visual Speech Recognition en
dc.type Objeto de conferencia es
sedici.identifier.uri http://44jaiio.sadio.org.ar/sites/default/files/asai113-120.pdf es
sedici.identifier.issn 2451-7585 es
sedici.creator.person Sad, Gonzalo D. es
sedici.creator.person Terissi, Lucas D. es
sedici.creator.person Gómez, Juan Carlos es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Sociedad Argentina de Informática e Investigación Operativa (SADIO) es
sedici.subtype Objeto de conferencia es
sedici.rights.license Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)
sedici.rights.uri http://creativecommons.org/licenses/by-sa/3.0/
sedici.date.exposure 2015
sedici.relation.event Argentine Symposium on Artificial Intelligence (ASAI 2015) - JAIIO 44 (Rosario, 2015) es
sedici.description.peerReview peer-review es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0)