Busque entre los 170597 recursos disponibles en el repositorio
Mostrar el registro sencillo del ítem
dc.date.accessioned | 2016-04-07T13:09:36Z | |
dc.date.available | 2016-04-07T13:09:36Z | |
dc.date.issued | 2015 | |
dc.identifier.uri | http://sedici.unlp.edu.ar/handle/10915/52105 | |
dc.description.abstract | In this work, new multi-classifier schemes for isolated word speech recognition based on the combination of standard Hidden Markov Models (HMMs) and Complementary Gaussian Mixture Models (CGMMs) are proposed. Typically, in speech recognition systems, each word or phoneme in the vocabulary is represented by a model trained with samples of each particular class. The recognition is then performed by computing which model best represents the input word/phoneme to be classified. In this paper, a novel classification strategy based on complementary class models is presented. A complementary model to a particular class j refers to a model that is trained with instances of all the considered classes, excepting the ones associated to that class j. The classification schemes proposed in this paper are evaluated over two audio-visual speech databases, considering acoustic noisy conditions. Experimental results show that improvements in the recognition rates through a wide range of signal to noise ratios (SNRs) are achieved with the proposed classification methodologies. | en |
dc.format.extent | 113-120 | es |
dc.language | en | es |
dc.subject | Speech recognition and synthesis | es |
dc.subject | audio-visual information fusion | en |
dc.subject | decision level fusion | en |
dc.title | Combination of Standard and Complementary Models for Audio-Visual Speech Recognition | en |
dc.type | Objeto de conferencia | es |
sedici.identifier.uri | http://44jaiio.sadio.org.ar/sites/default/files/asai113-120.pdf | es |
sedici.identifier.issn | 2451-7585 | es |
sedici.creator.person | Sad, Gonzalo D. | es |
sedici.creator.person | Terissi, Lucas D. | es |
sedici.creator.person | Gómez, Juan Carlos | es |
sedici.subject.materias | Ciencias Informáticas | es |
sedici.description.fulltext | true | es |
mods.originInfo.place | Sociedad Argentina de Informática e Investigación Operativa (SADIO) | es |
sedici.subtype | Objeto de conferencia | es |
sedici.rights.license | Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) | |
sedici.rights.uri | http://creativecommons.org/licenses/by-sa/3.0/ | |
sedici.date.exposure | 2015 | |
sedici.relation.event | Argentine Symposium on Artificial Intelligence (ASAI 2015) - JAIIO 44 (Rosario, 2015) | es |
sedici.description.peerReview | peer-review | es |