Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-07-07T14:34:21Z
dc.date.available 2020-07-07T14:34:21Z
dc.date.issued 2017-04-12
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/100111
dc.description.abstract Let F0 = {fi}i∈In0 be a finite sequence of vectors in Cd and let a = (ai)i∈Ik be a finite sequence of positive numbers, where In = {1,...,n} for n ∈ N. We consider the completions of F0 of the form F = (F0, G) obtained by appending a sequence G = {gi}i∈Ik of vectors in Cd such that gi2 = ai for i ∈ Ik, and endow the set of completions with the metric d(F, F˜) = max{ gi − ˜gi : i ∈ Ik} where F˜ = (F0, G˜). In this context we show that local minimizers on the set of completions of a convex potential Pϕ, induced by a strictly convex function ϕ, are also global minimizers. In case that ϕ(x) = x2 then Pϕ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD. en
dc.language en es
dc.subject Frame completions es
dc.subject Convex potential es
dc.subject Local minimum es
dc.subject Majorization es
dc.title Frame completions with prescribed norms: local minimizers and applications en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/20215 es
sedici.identifier.other http://dx.doi.org/10.1007/s10444-017-9535-y es
sedici.identifier.other hdl:11336/20215 es
sedici.identifier.issn 1019-7168 es
sedici.creator.person Massey, Pedro Gustavo es
sedici.creator.person Rios, Noelia Belén es
sedici.creator.person Stojanoff, Demetrio es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Advances in Computational Mathematics es
sedici.relation.journalVolumeAndIssue vol. 44 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)