Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-07-09T16:49:46Z
dc.date.available 2020-07-09T16:49:46Z
dc.date.issued 2012-11
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/100354
dc.description.abstract Let M be a finite von Neumann algebra with a faithful normal trace τ. Denote by Lp(M)sh the skew-Hermitian part of the non-commutative Lp space associated with (M, τ). Let 1 < p < ∞, z ∈ Lp(M)sh and S be a real closed subspace of Lp(M)sh. The metric projection Q : Lp(M)sh −→ S is defined for every z ∈ Lp(M)sh as the unique operator Q(z) ∈ S such that kz − Q(z)kp = miny∈ S kz − ykp. We show the relation between metric projection and metric geometry of homogeneous spaces of the unitary group UM of M, endowed with a Finsler quotient metric induced by the p-norms of τ, kxkp = τ(|x| p) 1/p, p an even integer. The problem of finding minimal curves in such homogeneous spaces leads to the notion of uniformly bounded metric projection. Then we show examples of metric projections of this type. en
dc.format.extent 13-23 es
dc.language en es
dc.subject Finite von Neumann algebra es
dc.subject Metric projection es
dc.subject Homogeneous space es
dc.title Examples of homogeneous manifolds with uniformly bounded metric projection en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/18935 es
sedici.identifier.uri http://inmabb.criba.edu.ar/revuma/pdf/v53n2/v53n2a02.pdf es
sedici.identifier.other hdl:11336/18935 es
sedici.creator.person Chiumiento, Eduardo Hernán es
sedici.subject.materias Matemática es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ciencias Exactas es
mods.originInfo.place Consejo Nacional de Investigaciones Científicas y Técnicas es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Revista de la Union Matemática Argentina es
sedici.relation.journalVolumeAndIssue vol. 53, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)