Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-07-15T15:37:28Z
dc.date.available 2020-07-15T15:37:28Z
dc.date.issued 2016-01-11
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/100753
dc.description.abstract Bacterial cellulose (BC) films modified by the in situ method with the addition of alginate (Alg) during the microbial cultivation of Gluconacetobacter hansenii under static conditions increased the loading of doxorubicin by at least three times. Biophysical analysis of BC-Alg films by scanning electron microscopy, thermogravimetry, X-ray diffraction and FTIR showed a highly homogeneous interpenetrated network scaffold without changes in the BC crystalline structure but with an increased amorphous phase. The main molecular interactions determined by FTIR between both biopolymers clearly suggest high compatibility. These results indicate that alginate plays a key role in the biophysical properties of the hybrid BC matrix. BC-Alg scaffold analysis by nitrogen adsorption isotherms revealed by the Brunauer?Emmett?Teller (BET) method an increase in surface area of about 84% and in pore volume of more than 200%. The Barrett?Joyner?Halenda (BJH) model also showed an increase of about 25% in the pore size compared to the BC film.Loading BC-Alg scaffolds with different amounts of doxorubicin decreased the cell viability of HT-29 human colorectal adenocarcinoma cell line compared to the free Dox from around 95?53% after 24 h and from 63% to 37% after 48 h. Dox kinetic release from the BC-Alg nanocomposite displayed hyperbolic curves related to the different amounts of drug payload and was stable for at least 14 days. The results of the BC-Alg nanocomposites show a promissory potential for anticancer therapies of solid tumors. en
dc.format.extent 421-429 es
dc.language en es
dc.subject Bacterial cellulose es
dc.subject Alginate es
dc.subject Drug delivery es
dc.subject Nanocomposite es
dc.subject Doxorubicin es
dc.subject Cancer therapy es
dc.subject Human colorectal ht-29 cells es
dc.title Modified bacterial cellulose scaffolds for localized doxorubicin release in human colorectal HT-29 cells en
dc.type Articulo es
sedici.identifier.uri https://ri.conicet.gov.ar/11336/34537 es
sedici.identifier.other http://dx.doi.org/10.1016/j.colsurfb.2016.01.007 es
sedici.identifier.other hdl:11336/34537 es
sedici.identifier.issn 0927-7765 es
sedici.creator.person Cacicedo, Maximiliano Luis es
sedici.creator.person León, Ignacio Esteban es
sedici.creator.person Gonzalez, Jimena Soledad es
sedici.creator.person Porto, Luismar M. es
sedici.creator.person Alvarez, Vera Alejandra es
sedici.creator.person Castro, Guillermo Raúl es
sedici.subject.materias Ciencias Exactas es
sedici.description.fulltext true es
mods.originInfo.place Centro de Investigación y Desarrollo en Fermentaciones Industriales es
mods.originInfo.place Centro de Química Inorgánica es
sedici.subtype Preprint es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Colloids and Surfaces B: Biointerfaces es
sedici.relation.journalVolumeAndIssue vol. 140 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)