Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-08-03T15:02:30Z
dc.date.available 2020-08-03T15:02:30Z
dc.date.issued 2020
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/101163
dc.identifier.uri https://doi.org/10.35537/10915/101163
dc.description.abstract El aporte central de esta tesis es la definición de un nuevo método capaz de generar un conjunto de reglas de clasificación difusas de fácil interpretación, baja cardinalidad y una buena precisión. Estas características ayudan a identificar y comprender las relaciones presentes en los datos facilitando de esta forma la toma de decisiones. El nuevo método propuesto se denomina FRvarPSO (Fuzzy Rules variable Particle Swarm Oprmization) y combina una red neuronal competitiva con una técnica de optimización basada en cúmulo de partículas de población variable para la obtención de reglas de clasificación difusas, capaces de operar sobre atributos nominales y numéricos. Los antecedentes de las reglas están formados por atributos nominales y/o condiciones difusas. La conformación de estas últimas requiere conocer el grado de pertenencia a los conjuntos difusos que definen a cada variable lingüística. Esta tesis propone tres alternativas distintas para resolver este punto. Uno de los aportes de esta tesis radica en la definición de la función de aptitud o fitness de cada partícula basada en un ”Criterio de Votación” que pondera de manera difusa la participación de las condiciones difusas en la conformación del antecedente. Su valor se obtiene a partir de los grados de pertenencia de los ejemplos que cumplen con la regla y se utiliza para reforzar el movimiento de la partícula en la dirección donde se encuentra el valor más alto. Con la utilización de PSO las partículas compiten entre ellas para encontrar a la mejor regla de la clase seleccionada. La medición se realizó sobre doce bases de datos del repositorio UCI (Machine Learning Repository) y tres casos reales en el área de crédito del Sistema Financiero del Ecuador asociadas al riesgo crediticio considerando un conjunto de variables micro y macroeconómicas. Otro de los aportes de esta tesis fue haber realizado una consideración especial en la morosidad del cliente teniendo en cuenta los días de vencimiento de la cartera otorgada; esto fue posible debido a que se tenía información del cliente en un horizonte de tiempo, una vez que el crédito se había concedido Se verificó que con este análisis las reglas difusas obtenidas a través de FRvarPSO permiten que el oficial de crédito de respuesta al cliente en menor tiempo, y principalmente disminuya el riesgo que representa el otorgamiento de crédito para las instituciones financieras. Lo anterior fue posible, debido a que al aplicar una regla difusa se toma el menor grado de pertenencia promedio de las condiciones difusas que forman el antecedente de la regla, con lo que se tiene una métrica proporcional al riesgo de su aplicación. es
dc.language es es
dc.subject Reglas de Clasificación Difusas (Fuzzy Classification Rules) es
dc.subject Optimización mediante cúmulo de partículas tamaño variable (Variable Particle Swarm Optimization) es
dc.subject Minería de Datos es
dc.title Obtención de reglas de clasificación difusas utilizando técnicas de optimización es
dc.type Tesis es
sedici.title.subtitle Caso de estudio Riesgo Crediticio es
sedici.creator.person Jimbo Santana, Patricia Rosalía es
sedici.description.note Tesis en cotutela con la Universitat Rovira i Virgili (URV) (España). es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Informática es
sedici.subtype Tesis de doctorado es
sedici.rights.license Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
sedici.contributor.director Lanzarini, Laura Cristina es
sedici.contributor.director Bariviera, Aurelio F. es
sedici.contributor.juror Errecalde, Marcelo Luis es
sedici.contributor.juror Leguizamón, Mario Guillermo es
sedici.contributor.juror Olivas Varela, José Ángel es
thesis.degree.name Doctor en Ciencias Informáticas es
thesis.degree.grantor Universidad Nacional de La Plata es
sedici.date.exposure 2020-07-14
sedici.acta 78 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)