Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-08-25T17:39:04Z
dc.date.available 2020-08-25T17:39:04Z
dc.date.issued 2015
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/103069
dc.description.abstract We consider ionic transport by diffusion and migration through microstructured solid electrolytes. The assumed constitutive relations for the constituent phases follow from convex energy and dissipation potentials which guarantee thermodynamic consistency. The effective response is determined by homogenizing the relevant field equations via the notion ofmulti-scale convergence. The resulting homogenized response involves several effective tensors, but they all require the solution of just one standard conductivity problem over the representative volume element. A multi-scale model for semicrystalline polymer electrolytes with spherulitic morphologies is derived by applying the theory to a specific class of two-dimensional microgeometries for which the effective response can be computed exactly. An enriched model accounting for a random dispersion of filler particles with interphases is also derived. In both cases, explicit expressions for the effective material parameters are provided. The models are used to explore the effect of crystallinity and filler content on the overall response. Predictions support recent experimental observations on doped poly-ethylene-oxide systems which suggest that the anisotropic crystalline phase can actually support faster ion transport than the amorphous phase along certain directions dictated by the morphology of the polymeric chains. Predictions also support the viewpoint that ceramic fillers improve ionic conductivity and cation transport number via interphasial effects. en
dc.language en es
dc.subject Diffusion es
dc.subject Migration es
dc.subject Heterogeneous solids es
dc.subject Periodic homogenization es
dc.subject Interphases es
dc.title A model problem concerning ionic transport in microstructured solid electrolytes en
dc.type Articulo es
sedici.identifier.uri https://link.springer.com/article/10.1007/s00161-014-0391-4 es
sedici.identifier.other https://doi.org/10.1007/s00161-014-0391-4 es
sedici.identifier.issn 1432-0959 es
sedici.creator.person Curto Sillamoni, Ignacio José es
sedici.creator.person Idiart, Martín Ignacio es
sedici.subject.materias Ingeniería es
sedici.subject.materias Ingeniería Aeronáutica es
sedici.description.fulltext true es
mods.originInfo.place Facultad de Ingeniería es
mods.originInfo.place Departamento de Aeronáutica es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution 4.0 International (CC BY 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Continuum Mechanics and Thermodynamics es
sedici.relation.journalVolumeAndIssue vol. 27, no. 6 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution 4.0 International (CC BY 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution 4.0 International (CC BY 4.0)