Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-09-07T12:32:41Z
dc.date.available 2020-09-07T12:32:41Z
dc.date.issued 2016-10-25
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/103947
dc.description.abstract Searching biological sequence database is a common and repeated task in bioinformatics and molecular biology. The Smith–Waterman algorithm is the most accurate method for this kind of search. Unfortunately, this algorithm is computationally demanding and the situation gets worse due to the exponential growth of biological data in the last years. For that reason, the scientific community has made great efforts to accelerate Smith–Waterman biological database searches in a wide variety of hardware platforms. We give a survey of the state-of-the-art in Smith–Waterman protein database search, focusing on four hardware architectures: central processing units, graphics processing units, field programmable gate arrays and Xeon Phi coprocessors. After briefly describing each hardware platform, we analyse temporal evolution, contributions, limitations and experimental work and the results of each implementation. Additionally, as energy efficiency is becoming more important every day, we also survey performance/power consumption works. Finally, we give our view on the future of Smith–Waterman protein searches considering next generations of hardware architectures and its upcoming technologies. en
dc.format.extent 197-223 es
dc.language es es
dc.publisher Springer es
dc.subject Molecular biology es
dc.subject Bioinformatics es
dc.subject Algorithms es
dc.title State-of-the-art in Smith-Waterman Protein Database Search on HPC Platforms en
dc.type Libro es
sedici.identifier.other https://doi.org/10.1007/978-3-319-41279-5_6 es
sedici.identifier.isbn 978-3-319-41279-5 es
sedici.creator.person Rucci, Enzo es
sedici.creator.person García Sánchez, Carlos es
sedici.creator.person Botella, Guillermo es
sedici.creator.person De Giusti, Armando Eduardo es
sedici.creator.person Naiouf, Marcelo es
sedici.creator.person Prieto-Matías, Manuel es
sedici.subject.materias Ciencias Informáticas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigación en Informática es
mods.originInfo.place Universidad Complutense de Madrid es
sedici.subtype Capitulo de libro es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.contributor.compiler Wong, Ka-Chun es
sedici.relation.bookTitle Big Data Analytics in Genomics es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)