Subir material

Suba sus trabajos a SEDICI, para mejorar notoriamente su visibilidad e impacto

 

Mostrar el registro sencillo del ítem

dc.date.accessioned 2020-09-16T12:46:11Z
dc.date.available 2020-09-16T12:46:11Z
dc.date.issued 2016-04
dc.identifier.uri http://sedici.unlp.edu.ar/handle/10915/104734
dc.description.abstract The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models. en
dc.language en es
dc.subject Gene delivery es
dc.subject Skeletal muscle es
dc.subject Magnetic nanoparticles es
dc.subject Adenoviral vectors es
dc.subject Magnetofection es
dc.subject Magneto-adenovectors es
dc.title Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells en
dc.type Articulo es
sedici.identifier.uri http://hdl.handle.net/11336/51671 es
sedici.identifier.other https://dx.doi.org/10.4172/2157-7439.1000364 es
sedici.identifier.other hdl:11336/51671 es
sedici.identifier.issn 2157-7439 es
sedici.creator.person Pereyra, Andrea Soledad es
sedici.creator.person Mykhaylyk, Olga es
sedici.creator.person Falomir Lockhart, Eugenia es
sedici.creator.person Taylor, Jackson Richard es
sedici.creator.person Delbono, Osvaldo es
sedici.creator.person Goya, Rodolfo Gustavo es
sedici.creator.person Plank, Christian es
sedici.creator.person Hereñú, Claudia Beatriz es
sedici.subject.materias Bioquímica es
sedici.subject.materias Ciencias Médicas es
sedici.description.fulltext true es
mods.originInfo.place Instituto de Investigaciones Bioquímicas de La Plata es
sedici.subtype Articulo es
sedici.rights.license Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)
sedici.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0/
sedici.description.peerReview peer-review es
sedici.relation.journalTitle Journal of Nanomedicine & Nanotechnology es
sedici.relation.journalVolumeAndIssue vol. 7, no. 2 es


Descargar archivos

Este ítem aparece en la(s) siguiente(s) colección(ones)

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) Excepto donde se diga explícitamente, este item se publica bajo la siguiente licencia Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0)